

# Chemistry Revision



www.tekartlearning.com

**A Level Revision Papers** 

# SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 1. | _      |                                 |                                | _        |                                 | or nuclear r         |       |                   |                                 |
|----|--------|---------------------------------|--------------------------------|----------|---------------------------------|----------------------|-------|-------------------|---------------------------------|
|    | a.     | <sup>239</sup> <sub>94</sub> Pu | + <sup>4</sup> He <sup>-</sup> |          | <b>→</b> .                      |                      | +     | $^{27}_{13}Al$    | (01 mark)                       |
|    | b.     |                                 |                                |          | -                               | $^{234}_{90}Th$      | +     | α                 | (01 mark)                       |
|    | C.     | <sup>214</sup> <sub>83</sub> Bi |                                | <b>~</b> | <sup>206</sup> <sub>82</sub> Pb | +                    | +     | 3 <sub>2</sub> He | (01 mark)                       |
|    | d.     | <sup>250</sup> <sub>98</sub> Cf | +                              | –        | -                               | $\frac{257}{103}Lw$  | + 4   | $r_0^1 n$         | (01 mark)                       |
| 2. |        |                                 | e succes<br>26KJ/mo            |          | nisation                        | energies of          | ele   | ment <b>T</b>     | are <b>549</b> ,                |
|    | a.     | Explain                         | the <b>tren</b>                | d in th  | e varia                         | tion energy          | y of  | T.                | (03 marks)                      |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
|    | b.     | State th                        | e <b>group</b>                 | in the   | period                          | <b>ic table</b> to v | vhic  | հ <b>ፐ be</b>     | longs to.                       |
|    |        |                                 |                                |          |                                 |                      |       |                   | (01 mark)                       |
|    |        |                                 |                                |          |                                 |                      |       |                   |                                 |
| 3. |        |                                 | -                              |          |                                 | _                    |       |                   | <b>n</b> <sup>3</sup> of oxygen |
|    | gas. U | n coolin                        | g to roon                      | n temp   | erature                         | , the residua        | ai ga | ises occ          | upiea                           |

| a | . (i). Write the <b>equation</b> for the reaction between hydr                  |                    |
|---|---------------------------------------------------------------------------------|--------------------|
|   | and <b>oxygen gas</b> .                                                         | (01 mark)          |
|   |                                                                                 |                    |
|   | (ii).Determine the <b>molecular formula</b> of hydrocarbo                       | n P.<br>(03 marks) |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   | ••••••                                                                          | ••••••             |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
| b | . Write equations to show how hydrocarbon ${f P}$ can be p                      | _                  |
|   | from <b>propan-2-ol</b> .                                                       | (02 marks)         |
|   |                                                                                 |                    |
|   |                                                                                 |                    |
|   | plete the <b>equation</b> below and write the <b>suggested med</b><br>reaction. | <b>chanism</b> for |
|   | $_{S}HC=CH_{2}+Br_{2}$                                                          | . (04 marks)       |
|   |                                                                                 |                    |

 $70.0cm^3$ , when the residual gases were passed through potassium

hydroxide solution, the volume reduced to **40.0cm**<sup>3</sup>.

| 5. | Thermo energy data for some processes are s                                |                      |
|----|----------------------------------------------------------------------------|----------------------|
|    | Processes                                                                  | Energy (KJ/mol)      |
|    | ✓ Atomization of calcium                                                   | +178                 |
|    | ✓ First ionization energy of calcium                                       | +590                 |
|    | ✓ Second ionization energy of calcium                                      | +1146                |
|    | ✓ Formation of calcium fluorine                                            | <sup>-</sup> 1220    |
|    | ✓ Electron affinity of fluorine                                            | -328                 |
|    | ✓ Bond dissociation of fluorine                                            | +242.7               |
|    | a. (i). Calculate the <b>lattice energy</b> of calcin                      | um fluoride crystal. |
|    |                                                                            | (02 marks)           |
|    |                                                                            | (oz marno)           |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    | (ii).Determine the enthalpy of solution                                    |                      |
|    | [Enthalpies of Ca <sup>2+</sup> and F <sup>-</sup> ions are <sup>-</sup> 1 | · · · -              |
|    |                                                                            | (02½ marks)          |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |
|    |                                                                            |                      |

|    | b. (i).State the <b>effect of temperature</b> of the solution o fluoride.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f calcium<br>(01 mark)  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|    | (ii).Give <b>a reason</b> for your answer in b (i).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0½ mark)               |
| 6. | Methane reacts with steam according to the following equal to the fo | ation:                  |
|    | $CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)} H_r = ?$<br>The enthalpy of formation of methane, water & carbon dio -76, -242 & -394KJ/mol.<br>$C_{(s)} + 2H_{2(g)} \longrightarrow CH_{4(g)}\Delta H_f$ -76KJ/mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xide gas are            |
|    | $\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (03 marks)              |
|    | $CH_{4(g)} + 2H_2O_{(l)}$ $\longrightarrow$ $CO_{2(g)} + 4H_{2(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|    | b. State whether the reaction above is <b>feasible</b> , give a pour answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | reason for<br>(01 mark) |
| 7. | <ul> <li>2.0g of phosphorus raises the boiling point of 37.4g of carl by 1.003°C, whereas 4.65g of sulphur raises the boiling point carbondisulphide by 0.42°C.</li> <li>a. (i). Calculate the boiling point constant for carbond (Molar mass of sulphur is 256)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oint of <b>100g</b>     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

|    | (ii). Molar mass of phosphorus in carbondisulpide.                                | (03 marks)             |
|----|-----------------------------------------------------------------------------------|------------------------|
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    | b. Determine <b>the molecular formula</b> of phosphorus.                          | (02 marks)             |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
| 8. | (a). (i). State the <b>conditions for the reaction</b> between Bersulphuric acid. | nzene and<br>(01 mark) |
|    |                                                                                   |                        |
|    |                                                                                   |                        |
|    | (ii). Outline the <b>mechanism for the reaction</b> in <b>(a). (i)</b>            | . (02 marks)           |
|    |                                                                                   |                        |
|    |                                                                                   | •••••                  |

| . ,           | rite <b>equation (s)</b><br>hydroxybenzene               | •                                        | duct in <b>(a) (ii)</b> can be                                              | converted<br>(02 marks) |
|---------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|-------------------------|
|               |                                                          |                                          |                                                                             |                         |
| <br>. (a). De | fine the <b>order o</b> f                                | f reaction.                              | ••••••                                                                      | (01 mark)               |
|               |                                                          |                                          |                                                                             |                         |
| bet           | e experimental retween nitrogen m $2NO_{(g)} + O_{2(g)}$ |                                          |                                                                             | he reaction             |
|               |                                                          |                                          |                                                                             |                         |
|               | Initial concentr                                         | rations (mol/dm <sup>3</sup> )           | Rate of reaction (mo                                                        | ol/dm <sup>3</sup> /s)  |
|               | Initial concentr                                         | rations (mol/dm <sup>3</sup> )           | Rate of reaction (mo                                                        | ol/dm <sup>3</sup> /s)  |
|               |                                                          | <u> </u>                                 | Rate of reaction (mo                                                        | ol/dm <sup>3</sup> /s)  |
|               | NO                                                       | O <sub>2</sub>                           | `                                                                           | ol/dm <sup>3</sup> /s)  |
|               | NO<br>0.03                                               | O <sub>2</sub> 0.03                      | 2.7 X 10 <sup>-5</sup>                                                      | ol/dm <sup>3</sup> /s)  |
|               | NO<br>0.03<br>0.03<br>0.06                               | 0.03<br>0.06<br>0.03<br>e order of react | 2.7 X 10 <sup>-5</sup><br>5.5 X 10 <sup>-5</sup>                            | (01 mark)               |
|               | NO<br>0.03<br>0.03<br>0.06<br>(i). Determine the         | 0.03<br>0.06<br>0.03<br>e order of react | 2.7 X 10 <sup>-5</sup><br>5.5 X 10 <sup>-5</sup><br>10.8 X 10 <sup>-5</sup> |                         |
|               | NO<br>0.03<br>0.03<br>0.06<br>(i). Determine the         | 0.03<br>0.06<br>0.03<br>e order of react | 2.7 X 10 <sup>-5</sup><br>5.5 X 10 <sup>-5</sup><br>10.8 X 10 <sup>-5</sup> |                         |
|               | NO<br>0.03<br>0.03<br>0.06<br>(i). Determine the         | 0.03<br>0.06<br>0.03<br>e order of react | 2.7 X 10 <sup>-5</sup><br>5.5 X 10 <sup>-5</sup><br>10.8 X 10 <sup>-5</sup> |                         |
|               | NO<br>0.03<br>0.03<br>0.06<br>(i). Determine the         | 0.03<br>0.06<br>0.03<br>e order of react | 2.7 X 10 <sup>-5</sup><br>5.5 X 10 <sup>-5</sup><br>10.8 X 10 <sup>-5</sup> |                         |

| (ii).Write the <b>rate eq</b>                                               | uation 1 | for the re | eaction.   |           | (0½ mai      | ·k)<br> |
|-----------------------------------------------------------------------------|----------|------------|------------|-----------|--------------|---------|
|                                                                             |          |            |            |           |              |         |
| (c).Calculate the:                                                          |          |            |            |           |              |         |
| (i). Overall order of i                                                     | reaction | <b>1.</b>  |            |           | (0½ mai      | ·k)     |
|                                                                             |          |            |            |           |              |         |
|                                                                             |          |            |            |           |              |         |
| (ii). <b>Rate constant</b> for                                              | the read | ction and  | d state it | 's S.I un | iit.         |         |
| ()                                                                          |          |            |            |           | (0½ mar      | k)      |
|                                                                             |          |            |            | •••••     |              | •••     |
|                                                                             |          |            |            |           |              |         |
| SI                                                                          | ECTIO    |            | MARK       |           |              |         |
| ATTEMPT ANY                                                                 |          | UESTIC     | ONS IN     |           |              |         |
| 0.(a). Define the term <b>radioa</b>                                        | ctivity. |            |            |           | (01 mark<br> | )<br>   |
|                                                                             |          |            |            |           |              |         |
| (b).The table below shows protactinium, <sup>234</sup> <sub>91</sub> Pa var |          |            | radioact   | ive       |              |         |
| mass of protactinium (g)                                                    | 60.0     | 38.5       | 26.0       | 17.2      | 11.1         |         |
| Time (s)                                                                    | 0        | 40         | 80         | 120       | 160          |         |
| (i) Plot a graph of mage                                                    | af nuct  | o atinium  | . against  | time      | (02 marl     | ر       |

(i).Plot a **graph of mass** of protactinium against **time**. (03 marks)

|              |         |         | 11111111 |                 |                   |         |                  |                                       |
|--------------|---------|---------|----------|-----------------|-------------------|---------|------------------|---------------------------------------|
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          | 1111            |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          | 111111111       |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  | Production in the late of the late of |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
|              |         |         |          |                 |                   |         |                  |                                       |
| (ii) Hao you | r granh | to dota | umin a t | ho half         | ili <b>fo</b> of  | nnotad  | inium            |                                       |
| (ii).Use you | r graph | to dete | rmine t  | the <b>half</b> | f- <b>life</b> of | protact | inium.           |                                       |
| (ii).Use you | r graph | to dete | rmine t  | che <b>half</b> | F- <b>life</b> of | protact | inium.<br>(01 1  | mark)                                 |
| (ii).Use you | r graph | to dete | rmine t  | the <b>half</b> | f- <b>life</b> of | protact | cinium.<br>(01 1 | mark)                                 |
| (ii).Use you | r graph | to dete | rmine t  | the <b>half</b> | f <b>-life</b> of | protact | inium.<br>(01    | mark)                                 |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | f <b>-life</b> of | protact | inium.<br>(01 1  | mark)                                 |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | f <b>-life</b> of | protact | inium.<br>(01 i  | mark)<br>                             |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | F- <b>life</b> of | protact | inium.<br>(01 1  | mark)<br>                             |
| (ii).Use you | r graph | to dete | rmine t  | he <b>halí</b>  | F- <b>life</b> of | protact | inium.<br>(01 1  | mark)                                 |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | f- <b>life</b> of | protact | inium.<br>(01 i  | mark)<br>                             |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | <b>f-life</b> of  | protact | inium.<br>(01 i  | mark)<br>                             |
| (ii).Use you | r graph | to dete | rmine t  | he <b>half</b>  | - <b>life</b> of  | protact | inium.<br>(01 i  | mark)<br>                             |

| (iii).Calculate the <b>radioactive decay</b> of protactinium. (02 marks                                                                                                                                                         | )  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                 | •  |
|                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                 |    |
| 1.Name one reagent that can be used to distinguish between the followin pairs of compounds. In each case state what would be observed if each member of the pair is treated with the named reagent.  a. But-2-yne and But-1-yne | g  |
| Reagent. (01 mark                                                                                                                                                                                                               | () |
|                                                                                                                                                                                                                                 | •  |
|                                                                                                                                                                                                                                 | •  |
| Observations. (02 marks                                                                                                                                                                                                         | ;) |
|                                                                                                                                                                                                                                 | •  |
|                                                                                                                                                                                                                                 |    |
| b. $CO_2^{3-}$ and $HCO_3^{-}$                                                                                                                                                                                                  |    |
| Reagent. (01 mark                                                                                                                                                                                                               | () |
|                                                                                                                                                                                                                                 | •  |
| Observations. (02 marks                                                                                                                                                                                                         | ;) |
|                                                                                                                                                                                                                                 | •  |
|                                                                                                                                                                                                                                 |    |
| CH <sub>3</sub> COONa and COONa                                                                                                                                                                                                 |    |
| COONa                                                                                                                                                                                                                           |    |
| c. Reagent. (01 mark                                                                                                                                                                                                            | () |

| Observations.                                                                                                                            | (02 marks) |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                          |            |
|                                                                                                                                          |            |
| 12. The vapour pressure of a solution containing <b>108.2g</b> of <b>1000g</b> of water at <b>20°C</b> was reduced by <b>0.186mmHg</b> . |            |
| (The vapour pressure of water at 20°C is 17.54mmHg a. Calculate the molecular mass of substance Y.                                       |            |
| a. Galculate the <b>molecular mass</b> of substance 1.                                                                                   |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
| b. State <b>three assumption made</b> in (a).                                                                                            | (03 marks) |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |
|                                                                                                                                          |            |

| C.       | volatile sol      | y the vapour pressure of a solution out is <b>less</b> than the vapour pressure | of the pure       |  |  |  |  |  |  |
|----------|-------------------|---------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
|          | solvent.          |                                                                                 | (03 marks)        |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
| 13.(a).D | raw the stru      | cture and name the shape of the foll                                            | owing oxy anions  |  |  |  |  |  |  |
|          | trogen gas.       | •                                                                               | (03 marks)        |  |  |  |  |  |  |
|          | Oxy anions        | Structure                                                                       | Shape             |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          | $NO_2^-$          |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          | NO <sub>3</sub> - |                                                                                 |                   |  |  |  |  |  |  |
|          | 3                 |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
| (b)      | (i).Name the      | reagent (s) that can be used to disti                                           | nguish between    |  |  |  |  |  |  |
|          | the oxya          | nions in (a) above.                                                             | (01½ marks)       |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
| (ii      | ).State what      | would be observed if the solution of                                            | each oxy anion is |  |  |  |  |  |  |
|          |                   | treated with the reagent (s) you hav                                            |                   |  |  |  |  |  |  |
|          | above.            |                                                                                 | (02 marks)        |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |
|          |                   |                                                                                 |                   |  |  |  |  |  |  |

| when a solution of each oxy anion is treated separately with th reagent (s) you have named in b (i).                  | ce<br>e  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
| 14. The table shows the atomic radius and first ionization energy of some elements in period 3 of the periodic table. | <b>.</b> |  |  |  |  |  |  |  |  |
| Elements Na Mg Al Si P S Cl                                                                                           |          |  |  |  |  |  |  |  |  |
| Atomic radius   0.186   0.160   0.143   0.117   0.110   0.104   0.099                                                 |          |  |  |  |  |  |  |  |  |
| 1 <sup>st</sup> I.E(KJ/mol) 496 738 577 787 1060 1000 1251                                                            |          |  |  |  |  |  |  |  |  |
| a. (i). State how <b>atomic radius</b> of the elements <b>varies across</b> the period. (01 ma                        | rk)      |  |  |  |  |  |  |  |  |
| (ii).Explain your answer in a (i). (03 mar                                                                            | )        |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |
|                                                                                                                       |          |  |  |  |  |  |  |  |  |

| b. (i).Explain how atomic radius affects the ionization                                                    | (02 marks) |
|------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                            |            |
|                                                                                                            |            |
| (ii).Why the first ionization energy of aluminium is of magnesium.                                         | (03 marks) |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
| 15.Write equations to show how the following compoun synthesized and in each case state the conditions for |            |
| a $\begin{bmatrix} \text{CHCH}_2 \\ \\ \\ \text{n} \end{bmatrix}$ from $C_6H_5COCH_3$                      | (03 marks) |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |

| b. (                                    | SO <sub>3</sub> H<br>from        | СООН                       | (03 marks)                                                                                      |
|-----------------------------------------|----------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
| c. CH                                   | C <sub>3</sub> COCH <sub>3</sub> | from CH <sub>3</sub> HC=CH | H <sub>2</sub> (03 marks)                                                                       |
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
| 1 ( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                  |                            | - Cal - Call                                                                                    |
|                                         |                                  | the resultant solution     | of the following compounds in on is <b>neutral</b> , <b>acidic</b> or <b>basic</b> . (02 marks) |
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
| b)                                      | Ammonium M                       | ethanoate.                 | (02 marks)                                                                                      |
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
|                                         |                                  |                            |                                                                                                 |
| c)                                      | Phenyl Ammo                      | nium Chloride.             | (03 marks)                                                                                      |
|                                         |                                  |                            |                                                                                                 |

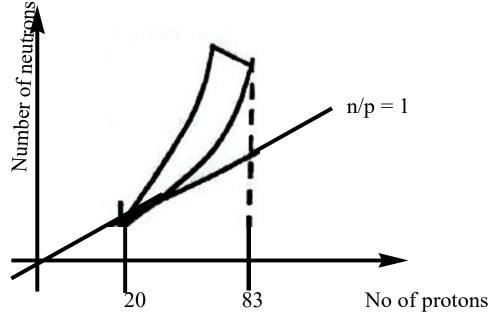
|      |                                              |                                       |                         |                | • • • • • • • • • • • • • • • • • • • • |             |
|------|----------------------------------------------|---------------------------------------|-------------------------|----------------|-----------------------------------------|-------------|
| d)   | Sodium Benzo                                 | ate.                                  |                         |                | (02 mark                                | cs)         |
|      |                                              |                                       |                         |                |                                         |             |
|      | lete the followir<br><b>anism</b> for the re |                                       | s and in each           | case outline a | suitable                                |             |
| a. C | H₃CH₂C <b>≔</b> CH−                          | 2HBr                                  | <b>-</b>                |                | (03                                     | marks)      |
|      |                                              |                                       |                         |                |                                         |             |
|      |                                              |                                       |                         |                |                                         |             |
|      |                                              |                                       |                         |                |                                         | <br>        |
| b. [ | + Co                                         | onc.H <sub>2</sub> SO <sub>4</sub> –  | Conc.HNO <sub>3</sub>   |                | (0                                      | )2 ½ marks) |
|      |                                              |                                       |                         |                |                                         |             |
|      |                                              |                                       |                         |                |                                         |             |
|      |                                              |                                       |                         |                |                                         | ••          |
| c. ( | C(CH <sub>3</sub> ) <sub>3</sub> Br — Na     | OH <sub>(aq)</sub> /CH <sub>3</sub> · | CH <sub>2</sub> OH<br>→ |                | ((                                      | 03½ marks)  |

#### THE PERIODIC TABLE

| 1                | 2                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                 | 3                | 4               | 5               | 6                | 7                | 8                |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|-----------------|------------------|------------------|------------------|
| 1.0<br>H<br>1    |                  | 1                |                  |                  |                  |                  |                  |                  |                  |                  |                 |                  |                 |                 |                  | 1.0<br>H         | 4.0<br>H         |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | 1                |                  |                  |                  |                  |                  |                  |                  |                  |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6  | 14.0<br>N<br>7  | 16.0<br>O<br>8   | 19.0<br>F<br>9   | 20.2<br>No<br>10 |
|                  | 24.3<br>Mg<br>12 |                  |                  |                  |                  |                  |                  | · 6              |                  |                  |                 | 27.0<br>Al<br>13 |                 | 31.0<br>P<br>15 | 32.1<br>S<br>16  | 35.4<br>Cl<br>17 |                  |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 | 45.0<br>Sc<br>21 | 47.9<br>Ti<br>22 | 50.9<br>V<br>23  | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 | 55.8<br>Fe<br>26 | 58.9<br>Co<br>27 | 58.7<br>Ni<br>28 | 63.5<br>Cu<br>29 |                 | 69.7<br>Ga<br>31 |                 |                 |                  | 79.9<br>Br<br>35 | 83.8<br>Kr<br>36 |
| 85.5<br>Rb<br>37 | 1                | 88.9<br>Y<br>39  | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | 95.9<br>Mo<br>42 |                  | 101<br>Ru<br>44  |                  | 106<br>Pd<br>46  |                  | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50 | 122<br>Sb<br>51 | 128<br>Te<br>52  | 127<br>I<br>53   | 131<br>Xe<br>54  |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57  | 178<br>Hf<br>72  | 1                | 184<br>W<br>74   | 186<br>Re<br>75  |                  | 1                | 195<br>Pt<br>78  |                  | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82 | 209<br>Bi<br>83 | 209<br>Po<br>84  | 210<br>At<br>85  | 222<br>Rn<br>86  |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89  |                  | E-               | i je             | 2 10             |                  | 9 35             |                  |                  |                 | 3 3              |                 |                 |                  |                  | 2 13             |
|                  |                  | 7 B              |                  | 140<br>Ce<br>58  | 141<br>Pr<br>59  | 144<br>Nd<br>60  | 147<br>Pm<br>61  | 150<br>Sm<br>62  | 152<br>Eu<br>63  | 157<br>Gd<br>64  | 159<br>Tb<br>65 | 162<br>Dy<br>66  | 165<br>Ho<br>67 | 167<br>Er<br>68 |                  | 173<br>Yb<br>70  | 175<br>Lu<br>71  |
|                  |                  | 3 8              | 227<br>Ac<br>89  | 232<br>Th<br>90  | 231<br>Pa<br>91  | 238<br>U<br>92   | 237<br>Np<br>93  |                  | 243<br>Am<br>95  | -                | 247<br>Bk<br>97 |                  | Es              | Fm              | 256<br>Md<br>101 | No               | Lw               |

**♥** ===END===

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.


1. Beryllium, magnesium & calcium are group II elements.

a. Write the general outer configuration of the elements. (01 mark)

b. Each of these elements reacts with carbon to form carbides. Write the equation for the reaction which occurs when each carbide reacts with water. (03 marks)

2. a. Define nuclear stability. (01 mark)

b (i). The graph below shows the variation of numbers of neutrons in an atom with proton numbers.



Explain why the bend of nuclear stability deviates from  $\frac{n}{p} = 1$  after atomic number 20. (02 marks)

|    | (ii). Given that the respective mass numbers and atomic nuthorium and lead are 232 and 90,208 and 82.                                                                                                        | imbers of            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    | Determine the number of alpha and beta particles that m                                                                                                                                                      | nust be              |
|    | emitted by thorium to transform to lead.                                                                                                                                                                     | (02 marks)           |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
|    |                                                                                                                                                                                                              |                      |
| 3. | <b>50.0cm</b> <sup>3</sup> of <b>0.1M</b> aqueous ammonia was added to <b>50.0cm</b> <sup>3</sup>                                                                                                            | of <b>0.1 M</b>      |
| 3. | <b>50.0cm</b> <sup>3</sup> of <b>0.1M</b> aqueous ammonia was added to <b>50.0cm</b> <sup>3</sup> hydrochloric acid and the resultant solution had a <b>pH</b> less t                                        |                      |
| 3. | <b>50.0cm</b> <sup>3</sup> of <b>0.1M</b> aqueous ammonia was added to <b>50.0cm</b> <sup>3</sup> hydrochloric acid and the resultant solution had a <b>pH</b> less t a. Give a reason for this observation. | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 |                      |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a <b>pH</b> less ta. Give a reason for this observation.                                                                                                    | han 7.               |
| 3. | hydrochloric acid and the resultant solution had a pH less t                                                                                                                                                 | han 7.<br>(02 marks) |
| 3. | hydrochloric acid and the resultant solution had a <b>pH</b> less ta. Give a reason for this observation.  b. Calculate the pH of the solution.                                                              | han 7.<br>(02 marks) |
| 3. | hydrochloric acid and the resultant solution had a <b>pH</b> less ta. Give a reason for this observation.  b. Calculate the pH of the solution.                                                              | han 7.<br>(02 marks) |
| 3. | hydrochloric acid and the resultant solution had a <b>pH</b> less ta. Give a reason for this observation.  b. Calculate the pH of the solution.                                                              | han 7.<br>(02 marks) |
| 3. | hydrochloric acid and the resultant solution had a <b>pH</b> less ta. Give a reason for this observation.  b. Calculate the pH of the solution.                                                              | han 7.<br>(02 marks) |

| 4. | State what would be observed and write equation between the following compounds and the reagent commonly used in identifying organic compounds. |               |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
|    | a. Neutral iron (III) chloride and phenol.  Observations:                                                                                       | (02 marks)    |  |  |  |  |  |
|    | Equation:                                                                                                                                       |               |  |  |  |  |  |
|    |                                                                                                                                                 |               |  |  |  |  |  |
|    | <ul> <li>b. Sodium nitrite in presence of concentrated hydrochloric ethyl methylamine.</li> <li>Observations:</li> </ul>                        | (02 marks)    |  |  |  |  |  |
|    | Equation:                                                                                                                                       |               |  |  |  |  |  |
|    |                                                                                                                                                 |               |  |  |  |  |  |
|    | c. Fehling's solution and ethanol. Observations:                                                                                                | (02 marks)    |  |  |  |  |  |
|    | Equation:                                                                                                                                       |               |  |  |  |  |  |
|    |                                                                                                                                                 |               |  |  |  |  |  |
| 5. | a. (i).Define the term Ore.                                                                                                                     | (01 mark)     |  |  |  |  |  |
|    | (ii).Name the common ores for the following metals. ( Aluminium                                                                                 | <br>@0½ mark) |  |  |  |  |  |
|    | Iron                                                                                                                                            |               |  |  |  |  |  |
|    | Copper                                                                                                                                          |               |  |  |  |  |  |
|    | 1 1                                                                                                                                             |               |  |  |  |  |  |

|    | Zinc                                                                                                                                                                                                                                                                                              |                                                                                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|    | b. State the role of the following process in the extra                                                                                                                                                                                                                                           | raction of metals.<br>(@ 01 mark)                                                     |
|    | i.Froth flotation.                                                                                                                                                                                                                                                                                |                                                                                       |
|    | ii.Roasting.                                                                                                                                                                                                                                                                                      |                                                                                       |
|    | iii.Smelting.                                                                                                                                                                                                                                                                                     |                                                                                       |
| 6. | a. Explain the term partition law.                                                                                                                                                                                                                                                                | (01½ marks)                                                                           |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    | b.An aqueous solution contains <b>10.0g</b> of <b>H</b> in a litre <b>100.0cm</b> <sup>3</sup> of this solution was shaken with <b>20.0</b> ether extracted <b>0.8g</b> of <b>H</b> .  Calculate the volume of the ether that is requirefrom <b>500.0cm</b> <sup>3</sup> of the aqueous solution. | cm <sup>3</sup> of ether and the<br>d to extract <b>80%</b> of <b>H</b><br>(03 marks) |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    |                                                                                                                                                                                                                                                                                                   |                                                                                       |
|    | c. Give a reason why extracting using aliquots im                                                                                                                                                                                                                                                 | proves the yield.<br>(01½ marks)                                                      |

| 7. | Both Aluminium and phosphorus form compounds in the oxidation states of +3. |
|----|-----------------------------------------------------------------------------|
|    | a. Briefly explain in terms of the electronic configuration why             |
|    | aluminium conducts electricity but all the common allotropes of             |
|    | phosphorus do not. (03 marks)                                               |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    | b. Write equation for the reaction between each element with sodium         |
|    | hydroxide solution. (03 marks)                                              |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
|    |                                                                             |
| 8. | Complete the following equations and name the main organic product.         |
|    | (@01½ marks)                                                                |
|    | a. $(CH_3CH_2COO)_2Ca \longrightarrow Heat \longrightarrow$                 |
|    |                                                                             |
|    | b. 2CH <sub>3</sub> CHO Dil.NaOH                                            |
|    | J                                                                           |

| a. Sta       | te Graham's law of gaseous diffusion.                                                                                          | (01 marl    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              | kel forms a carbonyl; Ni(CO) <sub>n</sub> . <b>Deduce the value</b> conoxide diffuses <b>2.46 times</b> faster than the carbon |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
|              |                                                                                                                                |             |
| c.Stat<br>i. | te: Oxidation state of Nickel in the compound.                                                                                 | (0½ mark    |
| ii.          | <b>Co-ordination numbers</b> of Nickel in the compo                                                                            | -           |
|              | SECTION B-54 MARKS                                                                                                             |             |
|              | ATTEMPT ANY SIX QUESTIONS IN T                                                                                                 | HIS SECTION |
|              | e equations to show how the following synthesis c                                                                              |             |
|              | ch case indicates the necessary reagents and cond                                                                              | itions.     |

| b. | Ethane                               | to | hydroxyethan    | oic acid.  | (02½ marks)         |
|----|--------------------------------------|----|-----------------|------------|---------------------|
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
| c. | Chloroethane                         | to | propanamide.    |            | (03½ marks)         |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |
|    | compound <b>Z</b> con                |    | % nitrogen, 43. | .5% oxygen | and the <b>rest</b> |
|    | eing manganese.<br>(i). Calculate th |    | formula of Z.   |            | (01½ marks)         |
|    |                                      |    |                 |            |                     |
|    |                                      |    |                 |            |                     |

| (ii | (ii).10.0g of <b>Z</b> in 1000.0g of water lowered to freezing po<br>by 0.127°C.                                                                                          | int of water           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|     | Calculate the <b>molecular formular</b> of $\mathbf{Z}$ . ( $\mathbf{K}_{\mathbf{f}}$ for water                                                                           |                        |
|     | 1.86°C/mol/kg)                                                                                                                                                            | (02 marks)             |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
| tv  | <b>Z</b> was dissolved in water to form a <b>pink solution</b> and div two parts. State would be <b>observed</b> and <b>write equation</b> reaction that took place when: |                        |
| i.  | . Acidified potassium manganite (VII) solution was add                                                                                                                    |                        |
|     | first part.<br>Observations:                                                                                                                                              | (02 marks)             |
|     |                                                                                                                                                                           |                        |
|     | Equation:                                                                                                                                                                 |                        |
|     |                                                                                                                                                                           |                        |
|     |                                                                                                                                                                           |                        |
| ii. | <ul> <li>Concentrated nitric acid and lead (IV) oxide was adde<br/>second part and the mixture boiled.</li> <li>Observations:</li> </ul>                                  | d to the<br>(02 marks) |
|     | Equation:                                                                                                                                                                 |                        |
|     | *                                                                                                                                                                         |                        |

| 12.Complete the following equations and write the suggested mechanism for the reaction. |
|-----------------------------------------------------------------------------------------|
| a. $CH_3CH_2CH_2CH_2OH \xrightarrow{Conc.H_2SO_4}$ Heat (03½ marks)                     |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| b. Fuming $H_2SO_4$ $ \hline                                   $                        |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| HBr (0214 marks)                                                                        |
| c. (02½ marks)                                                                          |
|                                                                                         |
|                                                                                         |

| <b>litre</b><br>rapid | oles of hydrogen and 18moles of iodine vapour were sealed tube at 465°C. When equilibrium was attained lly cooled and found to contain 30.8moles of hydrogove a reason why the tube was rapidly cooled. | l, the tube was              |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
| _                     | lculate the:                                                                                                                                                                                            | . 1.                         |
| i.                    | Value of the equilibrium constant, <b>Kc</b> for the reaction in the flask.                                                                                                                             | n taking place<br>(03 marks) |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
| ii.                   | Degree of dissociation of hydrogen iodide.                                                                                                                                                              | (02 marks)                   |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |
|                       |                                                                                                                                                                                                         |                              |

| c. State what would happen to the equilibrium position of in the flask above when sodium thiosulphate solution the flask. Give a reason for your answer. |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
| 4.Explain the following observations:  a. When sodium carbonate solution was added to a solut chromium (III) sulphate, bubbles of a colourless gas an    |                       |
| precipitate were observed.                                                                                                                               | (03 marks)            |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
| b. The bond angle of phosphorus triflouride is <b>96</b> ° while phosphorus trichloride is <b>100</b> °.                                                 | that of<br>(03 marks) |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |
|                                                                                                                                                          |                       |

| c.    | Aluminium utensils should be cleaned using soap.               | (03 marks) |
|-------|----------------------------------------------------------------|------------|
|       |                                                                | ••••••     |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
| 15.a) | . State <b>rate law</b> .                                      | (01 mark)  |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
| b)    | Explain why reactions with <b>high molecularity are rare</b> . | (03 marks) |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |
|       |                                                                |            |

c). A solution of hydrogen peroxide titrated against acidified potassium manganate (VII) solution at different time intervals, give the following results.

| Times (Minutes)                                                | О    | 10   | 20  |
|----------------------------------------------------------------|------|------|-----|
| Volume of accidified KMnO <sub>4</sub> used (cm <sup>3</sup> ) | 23.8 | 14.7 | 9.1 |

| i.   | Show that the <b>decomposition</b> of hydrogen peroxide is first. (03½ marks)                                                                                                                                                     | ļ           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   | ı           |
|      |                                                                                                                                                                                                                                   |             |
|      |                                                                                                                                                                                                                                   |             |
| ii.  | Calculate the <b>half-life</b> of decomposition of hydrogen peroxide. (01½ marks)                                                                                                                                                 |             |
|      |                                                                                                                                                                                                                                   | <u>İ</u> II |
|      | chemistry of fluorine differs from that of chlorine.  State <b>two differences</b> between the <b>chemistry</b> of <b>chlorine</b> and <b>fluorine</b> besides their reactions with <b>sodium hydroxide solution</b> . (02 marks) | )           |
|      |                                                                                                                                                                                                                                   | ı           |
| (ii) | .Write the <b>equations of reaction between hot concentrated potassium hydroxide solution</b> and: (@01½ marks) i. Fluorine                                                                                                       |             |

|           | ii.                        | Chlorine                                                                                                        |                                       |
|-----------|----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| b.        |                            | <b>uation for ionisation of hydrogen</b><br>s that are:<br>Dilute                                               | fluoride in aqueous<br>(@01½ marks)   |
|           | ii.                        | Concentrated                                                                                                    |                                       |
| C.        | State <b>one</b> chlorine. | e <b>reason</b> why the chemistry of fluori                                                                     | ine differs from that of<br>(01 mark) |
|           |                            |                                                                                                                 |                                       |
| 17.a)<br> | . (i). Defi                | ne <b>enthalpy of a reaction</b> .                                                                              | (01 mark)                             |
|           |                            | e <b>three factors affecting the quant</b> i <b>nge</b> of a reaction.                                          | ity of an enthalpy<br>(03 marks)      |
| <br>b)    | water a                    | ndard heat of formation of ethanol<br>are -227.0, -393.5, & -285.5KJ/mol<br>a Born-Haber cycle to relate the en | respectively.                         |
|           |                            |                                                                                                                 |                                       |

| •             | •                                     | •                                                | <b></b>                                                                                                     |
|---------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| your answers. |                                       |                                                  | (01½ marks)                                                                                                 |
|               | what can be <b>idea</b> your answers. | what can be <b>ideal use of e your answers</b> . | om <b>your calculation in b (ii) above</b> and what can be <b>ideal use of ethanol in ch your answers</b> . |

### THE PERIODIC TABLE

| 1                | 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                  |                  |                 |                 | 3                | 4                | 5               | 6                | 7                | 8                |
|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|------------------|------------------|-----------------|------------------|------------------|------------------|
| 1.0<br>H<br>1    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                  |                  |                 |                 |                  |                  |                 |                  | 1.0<br>H         | 4.0<br>Ho<br>2   |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | parameter of the parame |                  |                  |                  |                  |                  |                  |                  |                 |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6   | 14.0<br>N<br>7  | 16.0<br>O<br>8   | 19.0<br>F<br>9   | 20.2<br>No<br>10 |
| 23.0<br>Na<br>11 | 24.3<br>Mg<br>12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                  |                  |                 |                 | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15 | 32.1<br>S<br>16  | 35.4<br>Cl<br>17 |                  |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 50.9<br>V<br>23  | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 | 55.8<br>Fe<br>26 | 58.9<br>Co<br>27 | 58.7<br>Ni<br>28 |                 |                 | 69.7<br>Ga<br>31 |                  |                 |                  | 79.9<br>Br<br>35 | 83.8<br>Kr<br>36 |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | And and and      | 1                | 101<br>Ru<br>44  | 103<br>Rh<br>45  | 106<br>Pd<br>46  | 108<br>Ag<br>47 | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51 | 128<br>Te<br>52  | 127<br>I<br>53   | 131<br>Xe<br>54  |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178<br>Hf<br>72  | 181<br>Ta<br>73  | 184<br>W<br>74   | 186<br>Re<br>75  | 190<br>Os<br>76  | 192<br>Ir<br>77  | 195<br>Pt<br>78  | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82  | 209<br>Bi<br>83 | 209<br>Po<br>84  | 210<br>At<br>85  | 222<br>Rn<br>86  |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  | 2 13<br>2 130    | 4                | 9 55             |                  |                 |                 |                  |                  |                 |                  |                  | 2 3              |
|                  |                  | 6 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                  | 141<br>Pr<br>59  | 144<br>Nd<br>60  | 147<br>Pm<br>61  | 150<br>Sm<br>62  | 152<br>Eu<br>63  | 157<br>Gd<br>64 | 159<br>Tb<br>65 | 162<br>Dy<br>66  | 165<br>Ho<br>67  | 167<br>Er<br>68 | 169<br>Tm<br>69  |                  | 175<br>Lu<br>71  |
|                  |                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 227<br>Ac<br>89  |                  | 231<br>Pa<br>91  |                  | 237<br>Np<br>93  |                  |                  | -               | 247<br>Bk<br>97 |                  | Es               | Fm              | 256<br>Md<br>101 | No               | Lw               |

• ===END===

# SECTION A-46 MARKS ATTEMPT <u>ALL</u> QUESTIONS IN THIS SECTION.

| 1. | Complete the following <b>equations</b> and outline the <b>mechanism</b> for each |
|----|-----------------------------------------------------------------------------------|
|    | of the reactions.                                                                 |

| a.      | (CH <sub>3</sub> ) <sub>3</sub> CBr | OH-(aq) Heat           | <b>-&gt;</b>         |                  | (02½ mark) |
|---------|-------------------------------------|------------------------|----------------------|------------------|------------|
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
| b.      | OH +                                | CH <sub>3</sub> COCl — | NaOH <sub>(aq)</sub> | <b>-</b>         | (03 marks) |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
|         |                                     |                        |                      |                  |            |
| ••••    |                                     |                        |                      |                  |            |
|         | _                                   | ys according to        |                      | -                |            |
| 23<br>9 | $_{0}^{2}Th + \alpha -$             | <b>→</b> X +           | β ——                 | <b>→</b> Y + β — | <b>→</b> Z |
| a]      | •                                   | e following <b>spe</b> |                      |                  | (03 marks) |
|         |                                     |                        |                      |                  |            |
|         | 7.                                  |                        |                      |                  |            |

2.

|    | -                | The <b>half-life</b> of Thorium-232 is <b>234 days</b> . Determine the <b>tim taken</b> for Thorium to <b>decay</b> by <b>12.5%</b> of its <b>original value</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|    |                  | (03 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s)                                      |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| 3. | Wri <sup>a</sup> | ite equations for the reaction between water and: $(@01\frac{1}{2}$ Sodium hydride.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | marks)                                  |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    | b)               | Phosphorus (V) oxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    | c)               | Beryllium carbide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • • • • • • • • • • • • • • • • • • • |
| 4. |                  | .0cm <sup>3</sup> of a vaporized alcohol G, C <sub>n</sub> H <sub>2n+2</sub> OH diffused through a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                       |
|    |                  | g in <b>19.85 seconds</b> . Under the same conditions, the same volume is the same of the same o |                                         |
|    | -                | drogen gas diffused through under the same conditions in <b>21.</b> 8<br>c <b>onds</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85                                      |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | marks)                                  |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |

|    | (ii).Determine the <b>molecular formula</b> of <b>G</b> . | (01 mark)  |
|----|-----------------------------------------------------------|------------|
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
| b) |                                                           |            |
|    | possible isomers of <b>G</b> .                            | (02 marks) |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    | (ii).G reacts with aqueous sodium hydroxide solution      | and        |
|    | iodine solution to give a yellow precipitate. Ident       |            |
|    |                                                           | (0½ mark)  |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |
|    |                                                           |            |

| 5. | The standard electrode potentials for some half-cells are shown below. |                      |                                                 |                                               |                   |  |
|----|------------------------------------------------------------------------|----------------------|-------------------------------------------------|-----------------------------------------------|-------------------|--|
|    | F                                                                      | e <sup>3+</sup> (aq) | $Fe^{2+}_{(aq)}/Pt_{(s)}$ : $^{+}0.77V$ S       | $n^{4+}_{(aq)}$ , $Sn^{2+}_{(aq)}/Pt_{(s)}$ : | +0.15V            |  |
|    | a)                                                                     | Write                | e the cell convention for the o                 | combined cell.                                | (01½ marks)       |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    | b)                                                                     | Write                | e equation for the:<br>Reaction at the cathode. |                                               | (@01 mark)        |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        | ii.                  | Reaction at the anode.                          |                                               |                   |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        | iii.                 | Overall cell reaction.                          |                                               | (0½ mark)         |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    | c)                                                                     | Calcu                | late the <b>e.m.f</b> of the cell.              |                                               | (01 mark)         |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
| 6. |                                                                        | _                    | the reactivity of the following uorine.         | ng elements with wa                           | ter:<br>(0½ mark) |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        | (ii).C               | hlorine.                                        |                                               | (0½ mark)         |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |
|    |                                                                        | (iii).I              | odine.                                          |                                               | (0½ mark)         |  |
|    |                                                                        |                      |                                                 |                                               |                   |  |

|    | b) Write equation for the reaction between fluorine and: (@01½ marks) i. Cold dilute sodium hydroxide solution.                                                                                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                 |
|    | ii. Hot concentrated sodium hydroxide solution.                                                                                                                                                 |
|    | c) State what would be observed in b(i) and (ii) above. (01 mark)                                                                                                                               |
|    |                                                                                                                                                                                                 |
| 7. | Natural rubber has the following structure. $ ho H_3$                                                                                                                                           |
|    | $CH_3$ $CH_2$ $C=CH - CH_2CH_2$ $C=CH CH_2$ $CH_3$                                                                                                                                              |
|    | a) Write the <b>structure</b> and <b>name of the monomer</b> of natural rubber.  (02 marks)                                                                                                     |
|    | b) When <b>120.0g</b> of the monomer was polymerized, <b>3.49 X 10<sup>-4</sup>moles</b> of natura; rubber was formed. Calculate the <b>relative formula mass</b> of natural rubber. (02 marks) |
|    |                                                                                                                                                                                                 |
| _  |                                                                                                                                                                                                 |
| 8. | State what would be <b>observed</b> and <b>write equation</b> for the reaction                                                                                                                  |
|    | that would take place if <b>dilute sulphuric acid</b> is reacted with:  a) A solution containing iodate ions and iodide ions. (01 mark)  Observations:                                          |

|    |     | Equation:                                                         | (01½ marks)                        |
|----|-----|-------------------------------------------------------------------|------------------------------------|
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    | b)  | Aqueous sodium chromate.                                          |                                    |
|    |     | Observations:                                                     | (01 mark)                          |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     | Equation:                                                         | (01½ marks)                        |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
| 9. | a). | Define the term 'solubility product'.                             | (01 mark)                          |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    | b). | Calculate the <b>solubility product</b> of a saturated            | solution containing                |
|    |     | $8.35 \times 10^{-3}g$ of magnesium hydroxide in $1 \text{ litr}$ | <b>e</b> solution at <b>25°C</b> . |
|    |     |                                                                   | (03 marks)                         |
|    |     |                                                                   | (os marns)                         |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |
|    |     |                                                                   |                                    |

| c).State <b>one application</b> of solubility product.                                                          | (01 mark)                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
| SECTION B-54 MARKS                                                                                              |                                          |
| ATTEMPT ANY SIX QUESTIONS IN THIS                                                                               | SECTION.                                 |
| 10.Freezing point depression is one of the methods of determine                                                 | ining the                                |
| relative molecular mass of a solute or compound.                                                                |                                          |
| a) (i). State <b>four limitations</b> of determining molecular mas                                              | _                                        |
| point depression method.                                                                                        | (02 marks)                               |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
| (ii) Explain how accordation of solute molecules in a solu                                                      | tion affacts                             |
| (ii). Explain how association of solute molecules in a solu the molecular mass of determined by freezing point. |                                          |
| the molecular mass of determined by neezing point.                                                              | (03 marks)                               |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
|                                                                                                                 |                                          |
| b) A solution containing <b>0.142g</b> of naphthalene in <b>20.25g</b> of                                       | of benzene                               |
| caused a lowering of freezing point of <b>0.284°C</b> .                                                         |                                          |
| Calculate the <b>molar mass</b> of naphthalene.                                                                 | (04 marks)                               |
| (Cryoscopic constant, Kf of benzene=5.12°C mol kg-1)                                                            | le l |

| 11.(a). (i). Write the <b>electronic configuration</b> of chromium. (01 mark)                 |
|-----------------------------------------------------------------------------------------------|
|                                                                                               |
| (ii). State three characteristics of chromium as a transition metal. (01 $\frac{1}{2}$ marks) |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
| (b).Chromium (III) chloride was dissolved in water and the solution                           |
| tested with litmus paper. State what was observed and explain your                            |
| answer. (04 marks)                                                                            |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
|                                                                                               |
| (c). Ammonia solution was added drop wise to an aqueous solution of                           |
| chromium (III) chloride until in excess.                                                      |
| i. State what was observed. (01 mark)                                                         |

| ii.                  | Write equa                        | tion for the r | eaction that took pl                     | ace. $(01\frac{1}{2} \text{ marks})$ |
|----------------------|-----------------------------------|----------------|------------------------------------------|--------------------------------------|
|                      |                                   |                |                                          |                                      |
| 12 Write or          | tiona to ab                       | ovy bovy tho   | following compoun                        | da aan ba                            |
|                      | -                                 |                | following compoun<br>the reagents and co |                                      |
| reaction             |                                   | ase, marcare   | tire reagents and ex                     |                                      |
| a. CH <sub>3</sub> C | CH <sub>2</sub> CO <sub>2</sub> H | from           | Propene                                  | (03 marks)                           |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      | ОН                                |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
| b. [                 |                                   | from           | Benzene                                  | (03 marks)                           |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |
|                      |                                   |                |                                          |                                      |

|          |      | , CH          | I <sub>2</sub> CH <sub>2</sub> OH  |             |                |            |
|----------|------|---------------|------------------------------------|-------------|----------------|------------|
|          | c.   |               | from                               | Phenyln     | nethanol       | (03 marks) |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               | n, phosphorus and                  | sulphur a   | re some eleme  | nts in     |
| pe<br>a) |      | 3 of the peri | odic table.<br>nt, write the formu | ıla and naı | me the structu | re of the  |
| aj       |      | oride.        | iit, write the formu               |             |                | (04 marks) |
|          |      | Elements      | Formula of chloric                 | de          | structure      |            |
|          |      | Sodium        |                                    |             |                |            |
|          |      | Aluminium     |                                    |             |                |            |
|          |      | Phosphorus    |                                    |             |                |            |
|          |      | Sulphur       |                                    |             |                |            |
|          |      | Sulphul       |                                    |             |                |            |
| b)       |      | _             | for the reaction be                | tween wa    |                |            |
|          | i.   | Aluminiu      | m.                                 |             | (0)            | 1½ marks)  |
|          |      |               |                                    |             |                |            |
|          | ii.  | Phosphoi      | cus.                               |             | (01            | l½ marks)  |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          | iii. | Sulphur.      |                                    |             | (01            | 1½ marks)  |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |
|          |      |               |                                    |             |                |            |

| 4.(a). Kohlraush's law of ind         | lepent ionic co | onductivity f ions.   | (02 marks)                                  |
|---------------------------------------|-----------------|-----------------------|---------------------------------------------|
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
| (b).Given the following mo            |                 |                       |                                             |
| (CH <sub>3</sub> COO) <sub>2</sub> Cu | :_/\            | =195 ohm              | $^{-1}$ cm $^{2}$ mo $I^{-1}$               |
| CuCl <sub>2</sub>                     | _/              | =266 ohm              | cm <sup>2</sup> mol <sup>1</sup>            |
| HC1 :-                                | Λ.              | =426.2 ohr            | n <sup>-1</sup> cm <sup>2</sup> mo <i>l</i> |
| Calculate the molar cond              | uctivity at inf | inite dilution, 🔨     | • for                                       |
| ethanoic acid.                        |                 |                       | (03 marks)                                  |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       | •••••           |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
|                                       |                 |                       |                                             |
| (c).The ionic radii and ion           | ic mobilities a | t infinite dilution o | f some ion                                  |

are shown in the table below.

| Ions            | Ionic radius(nm) | Ionic mobility (cm/sec) |
|-----------------|------------------|-------------------------|
| Li <sup>+</sup> | 0.060            | 4.01 X 10 <sup>-4</sup> |
| Na <sup>+</sup> | 0.095            | 5.19 X 10 <sup>-4</sup> |
| K <sup>+</sup>  | 0.133            | 7.62 X 10 <sup>-4</sup> |

Explain the trend in the ionic mobilities.

(04 marks)

| 15.State what would be observed and write equation(s) for the | ne reaction(s) |
|---------------------------------------------------------------|----------------|
| that would take place when:                                   |                |
| a) Phenylethene is added to a solution of bromine in carbo    | n              |
| tetrachloride.                                                | (02 marks)     |
| Observations:                                                 |                |
|                                                               |                |
|                                                               |                |
|                                                               |                |
| Equation:                                                     |                |
|                                                               |                |
|                                                               |                |
| b) Hydrogen peroxide is added to acidified potassium man      | ganate (VII)   |
| solution.                                                     | (02½ marks)    |
| Observations:                                                 |                |
|                                                               |                |
|                                                               |                |
|                                                               |                |
| Equation:                                                     |                |
| •                                                             |                |
|                                                               |                |
| c) Ethyne is bubbled through ammoniacal silver nitrate so     | lution.        |
| -, - ,                                                        | (01½ marks)    |
| Obervations:                                                  | ,              |
|                                                               |                |

| d) Hydrogen sulphide is added to acidified sodium dichromate (VI)       |
|-------------------------------------------------------------------------|
| solution. (03 marks)                                                    |
| Observations:                                                           |
|                                                                         |
|                                                                         |
|                                                                         |
| Equation:                                                               |
|                                                                         |
|                                                                         |
| 16.Complete the following equations and in each case, write an accepted |
| mechanism for the reaction.                                             |
| a. $\bigcirc$ + CH <sub>3</sub> COCl $\longrightarrow$ - (02½ mark)     |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
| b. (CH <sub>3</sub> CO) <sub>2</sub> O + CH <sub>3</sub> NH (03 marks   |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |

| <b>O.0cm</b> <sup>3</sup> of <b>0.50M</b> hydrochloric acid was added to <b>250.0cm</b> <sup>3</sup> of wate                                                                                                                                                                            |                                          |                       |                |                     |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|----------------|---------------------|--------------|
| •                                                                                                                                                                                                                                                                                       | c. CH <sub>3</sub> CH <sub>2</sub> CHO — | H <sub>2</sub> N-OH ► |                |                     | (03½ ma      |
| -                                                                                                                                                                                                                                                                                       |                                          |                       |                |                     |              |
| -                                                                                                                                                                                                                                                                                       |                                          |                       |                |                     |              |
| O.0cm <sup>3</sup> of 0.50M hydrochloric acid was added to 250.0cm <sup>3</sup> of wate Calculate the p <sup>H</sup> of the resultant solution. (02 mark                                                                                                                                |                                          |                       |                |                     |              |
|                                                                                                                                                                                                                                                                                         | •                                        |                       |                | l to <b>250.0</b> 0 |              |
|                                                                                                                                                                                                                                                                                         |                                          |                       |                |                     |              |
|                                                                                                                                                                                                                                                                                         |                                          |                       |                |                     |              |
|                                                                                                                                                                                                                                                                                         |                                          |                       |                |                     |              |
|                                                                                                                                                                                                                                                                                         | is <b>8.7</b> .State any ass             | umption mad           | le.(The base o | dissociatio         | n constant f |
| <b>1dm</b> <sup>3</sup> of <b>0.1M</b> ammonia solution at <b>25°C</b> to give a solution whose $\mathbf{r}$ is <b>8.7</b> . State any assumption made. (The base dissociation constant fammonia solution, $\mathbf{K_b} = 1.8 \times \mathbf{10^5 mol/dm^3}$ at <b>25°C</b> ) (05½ mar |                                          |                       |                |                     |              |
| is <b>8.7</b> . State any assumption made. (The base dissociation constant f                                                                                                                                                                                                            |                                          |                       |                |                     |              |

| c) Few drops of aqueous sodium hydroxide solution were solution in (b).  | added to  |
|--------------------------------------------------------------------------|-----------|
| i. State what happened to the $\mathbf{p}^{\mathbf{H}}$ of the solution. | (0½ mark) |
|                                                                          |           |
|                                                                          |           |
|                                                                          |           |
|                                                                          |           |
| ii. Give a reason for your answer in c (i).                              | (01 mark) |
|                                                                          |           |
|                                                                          |           |
|                                                                          |           |

## THE PERIODIC TABLE

| 1                | 2                |                 |                  |                  |                  |                  |                  |                  |                  |                 |                 | 3                | 4                | 5               | 6                | 7                | 8                |
|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|------------------|------------------|-----------------|------------------|------------------|------------------|
| 1.0<br>H<br>1    |                  |                 |                  |                  |                  |                  |                  |                  |                  |                 |                 |                  |                  |                 |                  | 1.0<br>H         | 4.0<br>Ho<br>2   |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | 1               |                  |                  |                  |                  |                  |                  |                  |                 |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6   | 14.0<br>N<br>7  | 16.0<br>O<br>8   | 19.0<br>F<br>9   | 20.2<br>Ne<br>10 |
|                  | 24.3<br>Mg<br>12 |                 |                  |                  |                  |                  |                  |                  |                  |                 |                 | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15 | 32.1<br>S<br>16  | 35.4<br>Cl<br>17 | 40.0<br>Ar<br>18 |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                 |                  | 50.9<br>V<br>23  | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 | 55.8<br>Fe<br>26 | 58.9<br>Co<br>27 | 58.7<br>Ni<br>28 |                 |                 | 69.7<br>Ga<br>31 |                  |                 |                  | 79.9<br>Br<br>35 | 83.8<br>Kr<br>36 |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39 | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | 1                |                  | 101<br>Ru<br>44  |                  | 106<br>Pd<br>46  | 108<br>Ag<br>47 | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51 | 128<br>Te<br>52  | 127<br>I<br>53   | 131<br>Xe<br>54  |
| 133<br>Cs<br>55  | 137<br>Ba<br>56  |                 | 178<br>Hf<br>72  | 181<br>Ta<br>73  | 184<br>W<br>74   | 186<br>Re<br>75  |                  | 1                | 195<br>Pt<br>78  | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82  | 209<br>Bi<br>83 | 209<br>Po<br>84  | 210<br>At<br>85  | 222<br>Rn<br>86  |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89 |                  |                  | L I S            |                  | 1 - 1            | 9 45             |                  |                 |                 | 5 3              |                  |                 |                  |                  | 2   3            |
|                  |                  | (a)             |                  |                  |                  | 144<br>Nd<br>60  | 147<br>Pm<br>61  | 150<br>Sm<br>62  | 152<br>Eu<br>63  | 157<br>Gd<br>64 | 159<br>Tb<br>65 | 162<br>Dy<br>66  | 165<br>Ho<br>67  |                 | 169<br>Tm<br>69  | 173<br>Yb<br>70  | 175<br>Lu<br>71  |
|                  |                  | 7               | 227<br>Ac<br>89  |                  | 231<br>Pa<br>91  |                  | 237<br>Np<br>93  |                  |                  |                 | 247<br>Bk<br>97 |                  | Es               | Fm              | 256<br>Md<br>101 | No               | 260<br>Lw<br>103 |

**♥** ===END===

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 1. Uranium und             | dergoes nuclear decay acc                                                       | cording to the          | following |
|----------------------------|---------------------------------------------------------------------------------|-------------------------|-----------|
| equation.                  |                                                                                 |                         |           |
| $^{238}_{92}U + \alpha$    | → X +β →                                                                        | - γ +β                  | → z       |
| a) Identify                | the species $X$ , $Y$ & $Z$ .                                                   |                         | (03       |
| marks)                     |                                                                                 |                         |           |
| <b>X</b> :                 |                                                                                 |                         |           |
| у:                         |                                                                                 |                         |           |
| Z:                         |                                                                                 |                         |           |
| b) 10 0a of                | Uranium was left to dec                                                         | cay to decay.           | _         |
| the mass                   | s of Uranium that remain $e$ of Uranium, $t_{\frac{1}{2}} = 4.5 \times 10^{-2}$ |                         | (03       |
| the mass<br>[Half-lif      | e of Uranium, t <sub>½</sub> = 4.5 x                                            | (10 <sup>9</sup> years] | (03       |
| the mass<br>[Half-lif      | e of Uranium, t <sub>½</sub> = 4.5 x                                            | (10 <sup>9</sup> years] | (03       |
| the mass<br>[Half-lif      | e of Uranium, t <sub>½</sub> = 4.5 x                                            | (10 <sup>9</sup> years] | (03       |
| the mass<br>[Half-lif      | e of Uranium, t <sub>½</sub> = 4.5 x                                            | (10 <sup>9</sup> years] | (03       |
| the mass<br>[Half-lif      | e of Uranium, t <sub>½</sub> = 4.5 x                                            | (10 <sup>9</sup> years] | (03       |
| the mass<br>[Half-lif      | e of Uranium, $t_{\frac{1}{2}}$ = 4.5 x                                         | (10 <sup>9</sup> years] | (03       |
| the mass [Half-lift marks) | e of Uranium, $t_{\frac{1}{2}}$ = 4.5 x                                         | (10 <sup>9</sup> years] | (03       |
| the mass [Half-lift marks) | e of Uranium, $t_{\frac{1}{2}}$ = 4.5 ×                                         | (10 <sup>9</sup> years] | (03       |
| the mass [Half-lift marks) | e of Uranium, $t_{\frac{1}{2}}$ = 4.5 ×                                         | (10 <sup>9</sup> years] | (03       |
| the mass [Half-lift marks) | e of Uranium, $t_{\frac{1}{2}}$ = 4.5 ×                                         | (10 <sup>9</sup> years] | (03       |

|       | Beryllium oxide.                                  |                                             | $(01\frac{1}{2}$                |
|-------|---------------------------------------------------|---------------------------------------------|---------------------------------|
|       |                                                   |                                             |                                 |
| b)    | Chromium (III) oxi                                | de.                                         | (01 <del>1</del> / <sub>2</sub> |
|       | marks)                                            |                                             |                                 |
| c)    | Sulphur (IV) oxide                                |                                             | (01 <del>1</del> / <sub>2</sub> |
| ••••  | marks)                                            |                                             |                                 |
|       |                                                   |                                             |                                 |
| 3 Ca  | mplete the equation                               | s and write the accep                       | oted mechanism in               |
| J. CU |                                                   |                                             |                                 |
| ea    |                                                   | Conc.H <sub>2</sub> SO <sub>4(1)</sub> Heat | (02½ marks)                     |
| ea    |                                                   |                                             | (02½ marks)                     |
| ea    | CH <sub>3</sub> CH <sub>2</sub> CHCH <sub>3</sub> |                                             | (02½ marks)                     |

| Conc.H <sub>2</sub> SO <sub>4(1)</sub> Heat  | (02½ mark                               |
|----------------------------------------------|-----------------------------------------|
|                                              |                                         |
|                                              |                                         |
|                                              | •••••                                   |
|                                              |                                         |
|                                              |                                         |
|                                              |                                         |
| ······································       |                                         |
|                                              | (@01                                    |
| ark)                                         |                                         |
| Raoult's law.                                |                                         |
|                                              | • • • • • • • • • • • • • • • • • • • • |
|                                              |                                         |
|                                              | • • • • • • • • • • • • • • • • • • • • |
|                                              |                                         |
|                                              |                                         |
|                                              |                                         |
| Two conditions under which the law is valid. |                                         |
| Two conditions under which the law is valid. |                                         |
| Two conditions under which the law is valid. |                                         |
|                                              | tate: ark) Raoult's law.                |

- b) The vapour pressures of heptane and octane are 473.2 and 139.8Pa at a temperature of 20°C. Calculate:
  - i. The vapour pressure of a mixture containing 0.5 moles of heptane and 0.25 moles of octane at the same

| temperature. [ Assume that the two liquids f solution] marks)                         | orms ideal<br>(02 |
|---------------------------------------------------------------------------------------|-------------------|
|                                                                                       |                   |
|                                                                                       |                   |
| ii. The composition of the vapour. marks)                                             | (02               |
|                                                                                       |                   |
|                                                                                       |                   |
| $nH_2C=CCH=CH_2 \longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                   |
| i. State the conditions for the reaction.                                             | (01               |
| mark)                                                                                 |                   |
|                                                                                       | •••••••           |
|                                                                                       | •                 |
| •••••                                                                                 |                   |

| ii. Name the type of formation of polyi<br>(O½ mark)                                                         | • •                        | ding to the        |
|--------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
| b) A solution containir                                                                                      | na 2.8% of polyneo         | orene was found to |
| •                                                                                                            | ressure of $7.0 \times 10$ | ·                  |
| room temperature.                                                                                            |                            | ·                  |
| i. Molar mass of pol                                                                                         | lyneoprene.                | (02                |
| marks)                                                                                                       |                            |                    |
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
| •••••••••••••••••••••••••••••••••••••••                                                                      |                            |                    |
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
|                                                                                                              |                            |                    |
| ii.Value of n.                                                                                               |                            | (01                |
| mark)                                                                                                        |                            |                    |
|                                                                                                              |                            |                    |
| 6. State what would be ole takes place when: a) Excess concentrated copper (II) sulphate marks) Observation: | d hydrochloric acid        | •                  |
| ·····                                                                                                        |                            |                    |

|             | Equation:                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b           | ) Solid sodium iodide is heated with concentrated sulphuric acid.  marks) Observation:                                                                                                                                                                                                          |
|             | <br>Equation:                                                                                                                                                                                                                                                                                   |
| p<br>b<br>a | ompound, Q is a green solid. Q dissolves in water to form a ale green solution. The solution of Q formed a red recipitate when reacted with butanedioxime and a reddish rown solution when a few drops of iron (III) chloride is dded to it.when Q was heated, propanone was formed.  (O1 mark) |
| b           | <br>)Write equation for the reaction that took place when<br>compound, Q was heated. (01½<br>marks)                                                                                                                                                                                             |
| c           | Write equation (s) for the reaction (s) that would take place when excess ammonia solution is added to a solution of compound, Q.  (02 marks)                                                                                                                                                   |
|             | ····                                                                                                                                                                                                                                                                                            |

8. Draw the structure and name the shape of the following species.

| species.<br>Species | Structure | Shape |  |
|---------------------|-----------|-------|--|
| NO <sub>2</sub> -   |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
| SF <sub>4</sub>     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
| 11.0+               |           |       |  |
| H₃O⁺                |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |
|                     |           |       |  |

9. Write the equation in each case to show how the following compounds can synthesized.

| a) | СООН    | from                                    | benzene                                 | (02 marks) |
|----|---------|-----------------------------------------|-----------------------------------------|------------|
|    |         |                                         |                                         |            |
|    |         |                                         |                                         |            |
|    |         |                                         |                                         |            |
|    | ••••••• |                                         |                                         |            |
|    | ••••••  | •                                       | ••••••                                  |            |
|    | ••••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |            |

|                        | b) CH <sub>3</sub> COCH <sub>3</sub>                                                                                      | from                                             | prop-1-ene                                                        | (03 marks)                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|
|                        |                                                                                                                           |                                                  |                                                                   |                                                  |
|                        |                                                                                                                           |                                                  |                                                                   |                                                  |
|                        | ••••••                                                                                                                    |                                                  |                                                                   |                                                  |
|                        |                                                                                                                           |                                                  |                                                                   |                                                  |
|                        |                                                                                                                           |                                                  |                                                                   |                                                  |
|                        |                                                                                                                           |                                                  |                                                                   |                                                  |
|                        | ••••••••••••                                                                                                              | SECTIO                                           | N B-54 MARKS                                                      |                                                  |
|                        | ATTEMPT                                                                                                                   | ANY SIX C                                        | DUESTIONS IN T                                                    | HIS SECTION.                                     |
| 40 11                  | <b>.</b>                                                                                                                  | <b>4</b> 6.4 6.                                  | diadina.                                                          | ich haturaan                                     |
|                        | me one reagent<br>lowing pains of                                                                                         |                                                  | •                                                                 |                                                  |
| fol                    | lowing pairs of                                                                                                           | compounds.                                       | In each case, sto                                                 | ate what would                                   |
| fol<br>be<br>wit       | lowing pairs of observed if each                                                                                          | compounds.<br>ch member c                        | In each case, sto<br>of the pair is sepo                          | ate what would                                   |
| fol<br>be<br>wit<br>ma | lowing pairs of observed if each the reagent years)  rks)  (CH3)3COH                                                      | compounds.<br>ch member o<br>you have nar<br>and | In each case, sto<br>of the pair is sepo                          | ate what would<br>arately treated<br>(@03<br>OH. |
| fol<br>be<br>wit<br>ma | lowing pairs of observed if each the reagent yorks)  (CH3)3COH  Reagent:                                                  | compounds.<br>ch member d<br>you have nar<br>and | In each case, sto<br>of the pair is sepo<br>ned.<br>CH3CH2CH2CH2C | ate what would<br>arately treated<br>(@03<br>OH. |
| fol<br>be<br>wit<br>ma | lowing pairs of observed if each observed if each observed if each observed if each observation:  Observation:  OH3CH2CHO | compounds. ch member of you have nar and         | In each case, stood of the pair is seponded.  CH3CH2CH2CH2C       | ate what would arately treated (@03)  OH.  H3.   |

|            | Observation:                                                                     |
|------------|----------------------------------------------------------------------------------|
|            |                                                                                  |
|            |                                                                                  |
|            | <del></del>                                                                      |
| C          | c) Cl and Cl                                                                     |
|            | Reagent:                                                                         |
|            |                                                                                  |
|            |                                                                                  |
|            | Observation:                                                                     |
|            |                                                                                  |
|            | ······································                                           |
| 11.(a)     | Write the electronic configuration of chromium atom.                             |
|            |                                                                                  |
|            | (O1 mark)                                                                        |
|            |                                                                                  |
|            |                                                                                  |
| ы          | State why chromium is classified as a transition element.                        |
| b)         | State why chromium is classified as a transition element. $(0\frac{1}{2}$        |
| ь)         | State why chromium is classified as a transition element.                        |
| ь)         | State why chromium is classified as a transition element. (0 $\frac{1}{2}$ mark) |
| <b>b</b> ) | State why chromium is classified as a transition element. (0 $\frac{1}{2}$ mark) |
|            | State why chromium is classified as a transition element. (0½ mark)              |
|            | State why chromium is classified as a transition element. (0½ mark)              |

| d) To an aqueous solution of chromium (III) chloradded to concentrated ammonia solution drop in excess.  (i) State what was observed.                   |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| marks)                                                                                                                                                  |                     |
|                                                                                                                                                         | t took              |
|                                                                                                                                                         |                     |
|                                                                                                                                                         |                     |
| <ul><li>12. Compound, Y consists of 68.8% carbon, 4.92% hyd the rest being oxygen. The vapour density of the is 61.</li><li>a) Determine the:</li></ul> | •                   |
| (i) Empirical formula of compound, Y. marks)                                                                                                            | (02 <del>1</del> /2 |

| ••••••••••••••••••••••••••••••••••                   |                   |
|------------------------------------------------------|-------------------|
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      | ••••••••          |
|                                                      |                   |
|                                                      | ••••••            |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      | •••••••           |
|                                                      |                   |
|                                                      | ••••••            |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
| (ii) Molecular formula of compound, Y.               | $(01\frac{1}{2})$ |
| •                                                    | ` -               |
| marks)                                               |                   |
|                                                      |                   |
|                                                      | •••••••           |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      |                   |
|                                                      | •••••••••         |
|                                                      |                   |
| •••••••••••••••••••••••••••••••••••••••              |                   |
|                                                      |                   |
|                                                      |                   |
| (b) Company V brown with a south flower and the pli  |                   |
| (b) Compound, Y burns with a sooty flame and the pH  | I OT ITS          |
| aqueous solution is less than 7. Write the structu   | ınal              |
| aqueous solution is less than 7. Withe the situation | ii ai             |
| formula of compound, Y.                              |                   |
|                                                      |                   |
| (02½ marks)                                          |                   |
|                                                      |                   |
|                                                      | •••••             |
|                                                      |                   |
|                                                      |                   |
|                                                      | •••••             |
|                                                      |                   |
|                                                      |                   |
| •••••                                                |                   |

|           | oncentrated sulphuric acid on heating.  arks)                                           |                      |
|-----------|-----------------------------------------------------------------------------------------|----------------------|
| ••••      |                                                                                         |                      |
| <br>3.(a) | Write the equation and state the condition reaction leading to the formation of: marks) | (s) for the<br>(@02½ |
|           | (i) Iron (II) chloride. Equation:                                                       |                      |
|           |                                                                                         |                      |
|           | Condition (s):                                                                          |                      |
|           | (ii) Iron (III) chloride. Equation:                                                     |                      |
|           | Condition (s):                                                                          |                      |

| 1        | Write equation for the reaction that takes place<br>(III) chloride is dissolved in water.<br>marks) | (01½             |
|----------|-----------------------------------------------------------------------------------------------------|------------------|
| ,        |                                                                                                     | •••••••          |
| ,        |                                                                                                     |                  |
|          | ······································                                                              |                  |
|          | Magnesium ribbon was added to the solution in (b<br>(i) State what was observed.<br>mark)           | o) above.<br>(01 |
|          | (ii) Write equation for the reaction that took pla<br>marks)                                        |                  |
|          | ate what would be observed and write equation 1                                                     | for the          |
|          |                                                                                                     |                  |
| re       | action would take place if:<br>urks)                                                                | (@02             |
| re<br>mo | action would take place if: urks) Propene is bubbled through bromine water. Observation (s):        | (@02             |
| re<br>mo | rks) Propene is bubbled through bromine water.                                                      | (@02             |
| re<br>mo | rks) Propene is bubbled through bromine water. Observation (s):                                     | (@02             |
| re<br>mo | rks) Propene is bubbled through bromine water. Observation (s):                                     | (@02             |

| b) | A solution of iodine and sodium hydroxide solution is warmed with butanone.  Observation (s):           |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    |                                                                                                         |  |  |  |  |  |
|    | <b></b>                                                                                                 |  |  |  |  |  |
|    | Equation:                                                                                               |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
| ۵) | Sulphus (TV) syide is hubbled through saidified petersium                                               |  |  |  |  |  |
| c) | Sulphur (IV) oxide is bubbled through acidified potassium dichromate solution. $(02\frac{1}{2})$ marks) |  |  |  |  |  |
|    | Observation (s):                                                                                        |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    | Equation:                                                                                               |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    | <del></del>                                                                                             |  |  |  |  |  |
| d) | Chlorine gas is bubbled through potassium manganate (VII) solution.                                     |  |  |  |  |  |
|    | $(02\frac{1}{2} \text{ marks})$                                                                         |  |  |  |  |  |
|    | Observation (s):                                                                                        |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    |                                                                                                         |  |  |  |  |  |
|    | Equation:                                                                                               |  |  |  |  |  |

|     | ne standard electrode potentials, E <sup>0</sup> for some half-cell actions are given below:<br>/V                  |
|-----|---------------------------------------------------------------------------------------------------------------------|
| Mr  | $104^{-}_{(aq)} + 8H^{+}_{(aq)} + 5e$                                                                               |
|     | $O_4^{2-}(aq) + 2H^+(aq) + 2e \longrightarrow SO_3^{2-}(aq) + H_2O(1)$ .20                                          |
|     | 2(aq) + 2e                                                                                                          |
| Cla | 2(aq) + 2e 2Cl                                                                                                      |
|     | .36 Write the cell notation for the reaction between sulphit ions and acidified potassium manganate (VII) solution. |
|     | marks) (0                                                                                                           |
|     |                                                                                                                     |
|     | •••••                                                                                                               |
| b)  | Write the ionic equation for the overall cell reaction. (0                                                          |
|     | marks)                                                                                                              |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |
|     |                                                                                                                     |

| c) | Calculate the e.m.f of the cell. (marks)                                                                                                                        | 01½             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|    |                                                                                                                                                                 | ••••••          |
|    |                                                                                                                                                                 |                 |
|    |                                                                                                                                                                 |                 |
|    |                                                                                                                                                                 |                 |
|    |                                                                                                                                                                 | •••••           |
|    |                                                                                                                                                                 |                 |
|    |                                                                                                                                                                 | ••••••          |
|    | ······································                                                                                                                          |                 |
| d) | State whether the reaction is feasible or not and reason for your answer. mark)                                                                                 | d give a<br>(01 |
|    |                                                                                                                                                                 |                 |
|    |                                                                                                                                                                 |                 |
| e) | Explain why hydrochloric acid is not used to acidititrants in volumetric analysis involving potassium manganate (VII) solution. $(02\frac{1}{2} \text{ marks})$ | fy              |
|    |                                                                                                                                                                 | ••••••          |

| f) State which of bromine and chlorine a stronger oxidizing agent is and give a reason for your answer. (01 mark) | • • • • • • • |
|-------------------------------------------------------------------------------------------------------------------|---------------|
| f) State which of bromine and chlorine a stronger oxidizing agent is and give a reason for your answer. (01)      | · •••••       |
|                                                                                                                   | ng            |
|                                                                                                                   |               |
|                                                                                                                   | ,             |
|                                                                                                                   |               |
|                                                                                                                   |               |
| 16.(a) Differentiate between soap and soapless detergents.(02 marks)                                              |               |
| ·····                                                                                                             | ••••          |
|                                                                                                                   |               |

|    | ······································                                                             |                   |
|----|----------------------------------------------------------------------------------------------------|-------------------|
| b) | Write equations to show how a soapless detergent prepared from dodecanol. [CH3(CH2)10CH2OH. marks) | can be<br>(02     |
|    |                                                                                                    |                   |
| c) | Explain the cleasing action of soap. marks)                                                        | (02               |
|    |                                                                                                    |                   |
|    |                                                                                                    |                   |
| d) | State the merits and demerits of using a soapless instead of soap in washing. mark) Advantage:     | detergent<br>(@0½ |
|    | Disadvantage:                                                                                      |                   |

| <u>:)</u> | Explain why aluminium utensils should not be washed wit soap.  (02 marks) |
|-----------|---------------------------------------------------------------------------|
|           |                                                                           |
|           |                                                                           |
|           |                                                                           |
|           | •••••••                                                                   |
| ) (       | Differentiate between order of a reaction and molecular                   |
|           | Differentiate between order of a reaction and molecular<br>(0)<br>marks)  |
|           | Differentiate between order of a reaction and molecular<br>(0)            |
|           | Differentiate between order of a reaction and molecular<br>(0)<br>marks)  |
|           | Differentiate between order of a reaction and molecular (0) marks)        |
|           | Differentiate between order of a reaction and molecular (0) marks)        |
|           | Differentiate between order of a reaction and molecular (0) marks)        |

| b) | The 3C           | e data in the               |                                         |          | s obtair | ned for                                 | the red           | action. |
|----|------------------|-----------------------------|-----------------------------------------|----------|----------|-----------------------------------------|-------------------|---------|
|    | Ti               | me (minutes)                | 0                                       | 60       | 120      | 180                                     | 240               | 320     |
|    |                  | 910[C]                      | -0.62                                   | -0.80    | -1.00    | -1.14                                   | <sup>-</sup> 1.34 | -1.47   |
|    | Plo <sup>o</sup> | t a graph of l              |                                         |          |          |                                         | ·                 | 03      |
| c) |                  | om the graph                | determi                                 | ne the ( | order o  | t the ro                                | eaction.          |         |
|    |                  | mark)                       | ••••••                                  |          |          | ••••••                                  |                   | •••••   |
|    | •••••            |                             | ••••••••••••••••••••••••••••••••••••••• |          |          |                                         |                   |         |
|    | •••••            |                             |                                         |          |          |                                         |                   |         |
| d) |                  | culate: The rate con marks) | stant fo                                | r the r  | eaction. |                                         | (                 | 02      |
|    | (ii)             | The half-life               |                                         |          |          |                                         |                   | (01     |
|    |                  |                             |                                         |          |          |                                         |                   |         |
|    |                  |                             |                                         |          |          | ••••••••••••••••••••••••••••••••••••••• |                   |         |
|    |                  |                             |                                         |          |          |                                         |                   |         |

## THE PERIODIC TABLE

| 1                | 2                |                 |                  |                  |                  |                  |                 |                 |                 |                 |                 | 3                                     | 4                | 5               | 6               | 7                | 8                          |
|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------------------------|------------------|-----------------|-----------------|------------------|----------------------------|
| 1.0<br>H<br>1    |                  |                 |                  |                  |                  |                  |                 |                 |                 |                 |                 |                                       |                  |                 |                 | 1.0<br>H         | 4.0<br>He<br>2             |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   |                 |                  |                  |                  |                  |                 |                 |                 |                 |                 | 10.8<br>B<br>5                        | 12.0<br>C<br>6   | 14.0<br>N<br>7  | 16.0<br>O<br>8  | 19.0<br>F<br>9   | 20.2<br>Ne<br>10           |
| Na               | 24.3<br>Mg<br>12 |                 |                  |                  |                  |                  |                 |                 |                 |                 |                 | 27.0<br>Al<br>13                      |                  | 31.0<br>P<br>15 | 32.1<br>S<br>16 | 35.4<br>Cl<br>17 |                            |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                 | 47.9<br>Ti<br>22 | 1                | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 |                 |                 | 1               | 1               |                 | 69.7<br>Ga<br>31                      | 72.6<br>Ge<br>32 |                 |                 | 79.9<br>Br<br>35 | 83.8<br>Kr<br>36           |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39 | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 |                  |                  | 101<br>Ru<br>44 | 1               | 106<br>Pd<br>46 |                 | 112<br>Cd<br>48 | 115<br>In<br>49                       | 119<br>Sn<br>50  | 122<br>Sb<br>51 | 128<br>Te<br>52 | 127<br>I<br>53   | 131<br>Xe<br>54            |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57 | 178<br>Hf<br>72  | 1                | 184<br>W<br>74   | 186<br>Re<br>75  |                 | 1               |                 | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81                       | 207<br>Pb<br>82  | 209<br>Bi<br>83 | 209<br>Po<br>84 | 210<br>At<br>85  | 222<br>Rn<br>86            |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89 | -                |                  |                  | 2 13 A           |                 | 9 55            |                 |                 |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  |                 |                 |                  | 2   3<br>  25<br>  75   13 |
|                  |                  | 6 (1)           |                  | 140<br>Ce<br>58  |                  |                  |                 | 150<br>Sm<br>62 | 152<br>Eu<br>63 | 157<br>Gd<br>64 | 159<br>Tb<br>65 | 162<br>Dy<br>66                       | 165<br>Ho<br>67  | 167<br>Er<br>68 | 169<br>Tm<br>69 | 173<br>Yb<br>70  | 175<br>Lu<br>71            |
|                  |                  | 7               | 227<br>Ac<br>89  |                  | 231<br>Pa<br>91  | 238<br>U<br>92   |                 | 244<br>Pu<br>94 |                 |                 |                 |                                       | Es               |                 | Md              |                  |                            |

**♥** ===END===

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 1. The a) | e elements <b>tin</b> and <b>lead</b> belong to <b>group (IV)</b> of the p<br>Write <b>equation</b> for the preparation of the <b>tetra c</b><br>elements:  ✓ Tin                                                                                                                                                                           |                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|           | ✓ Lead                                                                                                                                                                                                                                                                                                                                      |                                                                    |
| b)<br>    | Tin (IV) chloride fumes in moist air. Explain this                                                                                                                                                                                                                                                                                          | observation.<br>(03 marks)                                         |
|           |                                                                                                                                                                                                                                                                                                                                             |                                                                    |
| i<br>ii   | Complete <b>the following nuclear reactions</b> . $^9_4Be + \gamma \longrightarrow ^8_4Be + \dots + ^4_2He$ It takes <b>5 days</b> for <b>0.025mg</b> of bismuth- <b>214</b> to dising <b>0.0125mg</b> of bismuth- <b>210</b> . Calculate the <b>time</b> requires bismuth- <b>214</b> to change in to <b>0.001mg</b> bismuth- <b>210</b> . | (01 mark)<br>(01 mark)<br>ntegrate in to<br>red for <b>0.016mg</b> |
|           | DISTRICTI-214 to Change in to <b>0.001ing</b> DISTRICTI-210                                                                                                                                                                                                                                                                                 |                                                                    |
| -         | At <b>25°C, 0.1M</b> solution of ethylamine is <b>7.3%</b> ionized<br>Write an <b>equation</b> for the <b>ionization</b> of ethylamine in                                                                                                                                                                                                   |                                                                    |
| b) C      | alculate the <b>concentration</b> of hydroxide ions at equi                                                                                                                                                                                                                                                                                 | librium.                                                           |

| ethylamine so        | of ethylamine hydrochl<br>lution in <b>(a).</b> Calculate t<br>nt solution. State <b>any as</b> | he hydroxide ion co         | ncentration |
|----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|-------------|
|                      |                                                                                                 | ······                      |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             |             |
|                      |                                                                                                 |                             | anion.      |
| Draw a <b>struct</b> | <b>cure</b> and <b>name the sha</b>                                                             | <b>pe</b> of the followings | anion.      |
| Draw a <b>struct</b> | <b>cure</b> and <b>name the sha</b>                                                             | <b>pe</b> of the followings | anion.      |

| Observation(s):                                                                                                                                                                                          | (01 mark)                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                                                                          |                                                                   |
| (a). (i). State the <b>condition (s)</b> under which chlo                                                                                                                                                | orine gas reacts with                                             |
| sulphur dioxide gas.                                                                                                                                                                                     | (01 mark                                                          |
| (ii).Write <b>equation</b> for the reaction.                                                                                                                                                             | (01 mark)                                                         |
|                                                                                                                                                                                                          |                                                                   |
|                                                                                                                                                                                                          |                                                                   |
| (b).Chlorine gas was bubbled through sodium th<br>nitrate solution added to the resultant soluti<br>(i). State what <b>was observed</b> .                                                                | niosulphate and lead (II)                                         |
| (b).Chlorine gas was bubbled through sodium th<br>nitrate solution added to the resultant soluti<br>(i). State what <b>was observed</b> .<br>(ii). Write <b>equation (s)</b> for the <b>reaction (s)</b> | niosulphate and lead (II)<br>on.<br>(01 mark)                     |
| (b).Chlorine gas was bubbled through sodium th<br>nitrate solution added to the resultant soluti<br>(i). State what <b>was observed</b> .<br>(ii). Write <b>equation (s)</b> for the <b>reaction (s)</b> | niosulphate and lead (II)<br>on.<br>(01 mark)<br>that took place. |
| (b).Chlorine gas was bubbled through sodium th<br>nitrate solution added to the resultant soluti<br>(i). State what <b>was observed</b> .<br>(ii). Write <b>equation (s)</b> for the <b>reaction (s)</b> | niosulphate and lead (II)<br>on.<br>(01 mark)<br>that took place. |

| (b) Name a <b>reagent</b> which can be used to distinguish and cyclohexanol. State what would be <b>observed</b> treated with each compound. | -                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Reagent:                                                                                                                                     | (01 mark)                 |
|                                                                                                                                              |                           |
| Observations:                                                                                                                                | (01 mark                  |
| (c)Write equation show how phenol may be prepared diazonium chloride.                                                                        | from benzene<br>(01 mark) |
|                                                                                                                                              |                           |
| 7. (a)Write equation for the reaction between sodium h                                                                                       | (01 mark)                 |
| ii. Chlorine gas.                                                                                                                            | (01 mark)                 |
| (b). Sodium hydroxide solution was added to nickel (I                                                                                        |                           |
| solution.<br>i.State what was observed.                                                                                                      | (01 mark)                 |
| ii.Write equation for the reaction.                                                                                                          | (01 mark)                 |
| 8. (a). State <b>Graham's law</b> of gaseous diffusion.                                                                                      | (01 mark)                 |
| (b) A mixture of carbon monoxide and carbon diox through a porous partition in half the time take                                            |                           |

|    |            | volume of bromine vapour. Calculate the <b>percentage</b> dioxide gas in the gas mixture.                                                                                                                | of carbon (04 marks) |
|----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
| 9. |            | e atomic number of <b>element T</b> is <b>32</b> .  Write down the <b>electronic configuration of element T</b>                                                                                          | '. (01 mark)         |
|    |            |                                                                                                                                                                                                          |                      |
|    | -          | Write the <b>formula</b> of the:<br>i. <b>Hydride</b> of <b>T</b> .                                                                                                                                      | (@0½ mark)           |
|    | <br>ii<br> | i. <b>Chloride</b> of <b>T</b> .                                                                                                                                                                         |                      |
|    | c)         | Water was added to the <b>chloride of T</b> . State whether the <b>solution</b> was <b>neutral</b> , <b>acidic</b> or <b>alkaline</b> . <b>Explain your</b> giving an <b>equation for the reaction</b> . |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |
|    |            |                                                                                                                                                                                                          |                      |

| SECTION B-54 MARKS                                                                                                                                                                           |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ATTEMPT ANY SIX QUESTIONS IN TH                                                                                                                                                              | IS SECTION.      |
| When heated, carbon dioxide gas decomposes according below.                                                                                                                                  | to the equatior  |
| $2CO_{2(g)}$ $2CO_{(g)} + O_{2(g)}$                                                                                                                                                          |                  |
| If at a certain temperature and <b>1 atmospheric pressure</b> original carbon dioxide <b>gas remained undissociated</b> .  a) Calculate the <b>equilibrium constant, Kp</b> for the reaction |                  |
| a) Galculate the <b>equilibrium constant, Kp</b> for the reaction                                                                                                                            |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
| b) State and explain the effect of:                                                                                                                                                          |                  |
| i.Increasing the pressure to 2 atmospheres on the equili<br>concentration of oxygen gas.                                                                                                     | brium (02 marks) |
|                                                                                                                                                                                              | -                |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |
|                                                                                                                                                                                              |                  |

| ii.Carrying out the decomposition at a lower tempera<br>value of the equilibrium constant, Kp. | nture on the<br>(02 marks) |
|------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
| 11.Complete the following equations and write suggest the reaction:                            | ed mechanism for           |
| a. $CH_3HC=C$ $CH_3 \qquad H_3O^+/Warm$ $CH_3$                                                 | (03 marks)                 |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
| b. CH <sub>3</sub> CH <sub>2</sub> CHO + NaHSO <sub>3</sub>                                    | (03 marks)                 |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |
|                                                                                                |                            |

| c. Fe Fe (03 marks)                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| 12.(a). Define the following terms: (@01 mark)                                                                                                                                                                          |
| i.Lattice energy.                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| ii.Standard heat of formation of a substance.                                                                                                                                                                           |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
| b. The standard heat of formation of phosphorus trichloride is - <b>306KJ/mol</b> . The bond dissociation energy and enthalpy of atomization of chlorine and phosphorus are <b>314</b> & <b>242KJ/mol</b> respectively. |
| i. Draw a <b>Born-Haber</b> cycle for the formation of phosphorus                                                                                                                                                       |
| trichloride. (02 marks)                                                                                                                                                                                                 |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |

|    | 11.               | Use your cycle to <b>calculate</b> the P-Cl <b>bond energy</b> .                                                                              | (02 marks)                  |
|----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    | h                 | alculate the standard heat of formation of ethane if the eats of combustion of graphite, hydrogen and ethane and 1395 KJ/mol respectively.    |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
|    |                   |                                                                                                                                               |                             |
| 13 | <br>.(a).Si<br>i. | llver chromate is sparingly soluble in water. Write:<br>An <b>equation for the solubility of silver chromate</b> i                            | n water.<br>(01 mark)       |
|    |                   |                                                                                                                                               | _                           |
|    |                   |                                                                                                                                               |                             |
|    | ii.               | Write an expression of the solubility product consilver chromate.                                                                             | stant, Ksp for<br>(01 mark) |
| b. | certa             | solubility of silver chromate is <b>6.64 x 10<sup>-4</sup>g/100g</b> of w in temperature. Calculate the <b>solubility product</b> of si mate. |                             |
|    |                   |                                                                                                                                               |                             |

| c. | Calculate the <b>solubility of silver chromate in 1.0dm³ of 1.0M</b> silver nitrate. (03 marks)                         |
|----|-------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
| 14 | (03 marks). (a). Explain what is meant by the term order of a reaction.                                                 |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
|    |                                                                                                                         |
| b) | The following kinetics data was obtained for the reaction between an alkylhalide <b>S</b> and aqueous sodium hydroxide. |

| [S](mol/dm <sup>3</sup> ) | [OH <sup>-</sup> ](mol/dm <sup>3</sup> ) | Initial rate (mol/dm <sup>3</sup> s <sup>-</sup> ) |
|---------------------------|------------------------------------------|----------------------------------------------------|
| 0.100                     | 0.50                                     | 2.0 X 10 <sup>-3</sup>                             |
| 0.050                     | 0.25                                     | 1.0 X 10 <sup>-3</sup>                             |
| 0.100                     | 0.25                                     | 2.0 X 10 <sup>-3</sup>                             |
| 0.075                     | 0.25                                     | 1.5 X 10 <sup>-3</sup>                             |

| 1.   | sodium hydroxide solution. Give a reason for your answer.      |            |
|------|----------------------------------------------------------------|------------|
|      |                                                                | (03 marks) |
|      | Order with respect to <b>S</b> :                               |            |
|      | Reason:                                                        |            |
|      |                                                                |            |
|      |                                                                |            |
|      |                                                                |            |
|      | Order with respect to <b>OH</b> -:                             |            |
|      | Reason:                                                        |            |
|      |                                                                |            |
|      |                                                                |            |
| ii.  | Write an equation for the rate of reaction.                    | (01 mark)  |
|      |                                                                |            |
|      |                                                                |            |
| iii. | Calculate the <b>rate constant</b> and <b>give its units</b> . |            |
|      |                                                                |            |
|      |                                                                |            |
|      |                                                                |            |
|      |                                                                |            |
| iv.  | Write the <b>general structure</b> of <b>S</b> .               | (01 mark)  |
|      |                                                                |            |
|      |                                                                |            |
|      |                                                                |            |

| 15  | be ex  | Vrite the name and formula of one ore from which alur<br>stracted.<br>Name: | (@0½ mark)          |
|-----|--------|-----------------------------------------------------------------------------|---------------------|
|     |        | ormula of the ore:                                                          |                     |
|     | d)     | (i). Describe how the ore is purified.                                      | (04 marks)          |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        | (ii).Describe the reaction of aluminium metal with ac                       | cids.<br>(04 marks) |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
| 4.6 |        |                                                                             |                     |
| 16  | oxyg   |                                                                             | G                   |
|     | a)<br> | Calculate the <b>empirical formula of F</b> .                               | (03 marks)          |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |
|     |        |                                                                             |                     |

| b) |     | tils in steam at <b>98°C</b> and <b>1.01 X 10<sup>5</sup>Nm²</b> .If the vapor<br>r at <b>98°C</b> is <b>9.5 X 10<sup>4</sup>Nm²</b> . | ur pressure of |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | i.  | Calculate the <b>molecular mass of F</b> if the distillate                                                                             | contained      |
|    | 1.  | 16.67% by mass of <b>F</b> .                                                                                                           | (02 marks)     |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    |     |                                                                                                                                        |                |
|    | ii. | Determine the <b>molecular formula of F</b> .                                                                                          | (01 mark)      |
|    | ii. |                                                                                                                                        | (01 mark)      |
|    | ii. |                                                                                                                                        |                |
|    | ii. |                                                                                                                                        |                |
|    | ii. |                                                                                                                                        |                |
| c) |     | med a grey precipitate when treated with ammonia                                                                                       | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia                                                                                       | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |
| c) |     | med a grey precipitate when treated with ammonia<br>te. Write <b>equation</b> and <b>outlines a mechanism</b> for t                    | cal silver     |

|    | <b>5.0cm</b> <sup>3</sup> of <b>0.1M</b> zinc sulphate solution was added <b>25.0c</b> nomethane. The resultant solution was shaken with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c <b>m</b> <sup>3</sup> of <b>1.7M</b> |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|    | aloromethane and left to settle. <b>10.0cm</b> <sup>3</sup> of the aqueous l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aver                                   |
|    | gired $16.5$ cm $^3$ of $0.5$ M nitric acid. If the partition coeffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                      |
|    | ribution of aminomethane between water and trichloro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|    | t <b>25°C</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nemane is                              |
| a) | Calculate the concentration of aminomethane in the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rganic layei                           |
| -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (04 marks                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    | The acceptance of a section and the form of a section and the |                                        |
| b) | The concentration of aminomethane that formed a cozinc ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mpiex with [03 marks]                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |
| c) | Use your answer in (b) to write an equation for the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | action                                 |
| -  | between aminomethane and zinc ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (02 marks)                             |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

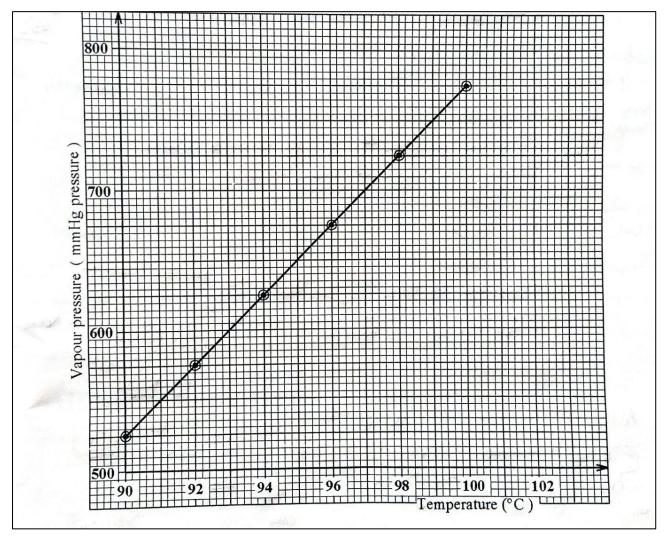
## THE PERIODIC TABLE

| 1                | 2                |                                         |                  |                  |                  |                 |                 |                  |                 |                 |                 | 3                | 4                | 5                | 6                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                       |
|------------------|------------------|-----------------------------------------|------------------|------------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1.0<br>H<br>1    |                  |                                         |                  |                  |                  |                 |                 |                  |                 |                 |                 |                  |                  |                  |                  | 1.0<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0<br>H<br>2           |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | 1                                       |                  |                  |                  |                 |                 |                  |                 |                 |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6   | 14.0<br>N<br>7   | 16.0<br>O<br>8   | 19.0<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.2<br>No<br>10        |
| Na               | 24.3<br>Mg<br>12 |                                         |                  |                  |                  |                 |                 |                  |                 |                 |                 | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15  | 32.1<br>S<br>16  | 35.4<br>Cl<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0<br>Ai<br>18        |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                                         |                  | 50.9<br>V<br>23  | 52.0<br>Cr<br>24 |                 |                 | 58.9<br>Co<br>27 |                 |                 |                 |                  | 72.6<br>Ge<br>32 | 74.9<br>As<br>33 | 79.0<br>Se<br>34 | 79.9<br>Br<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.8<br>Ki<br>36        |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39                         | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | 95.9<br>Mo<br>42 |                 | 101<br>Ru<br>44 | 103<br>Rh<br>45  | 106<br>Pd<br>46 | 108<br>Ag<br>47 | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51  | 128<br>Te<br>52  | 127<br>I<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131<br>Xe<br>54         |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57                         | 178<br>Hf<br>72  | 181<br>Ta<br>73  | 184<br>W<br>74   | 186<br>Re<br>75 | 190<br>Os<br>76 | 192<br>Ir<br>77  | 195<br>Pt<br>78 | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82  | 1                | 209<br>Po<br>84  | 210<br>At<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>Rn<br>86         |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89                         |                  |                  |                  | 1               |                 | 9 -22            | The per         |                 |                 | 2 199            |                  |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   3<br>2   3<br>3   5 |
| -                |                  | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 139<br>La<br>57  |                  |                  | 144<br>Nd<br>60 |                 | 150<br>Sm<br>62  | 152<br>Eu<br>63 |                 |                 | 162<br>Dy<br>66  |                  |                  | 169<br>Tm<br>69  | 173<br>Yb<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175<br>Lu<br>71         |
|                  |                  | 3 8                                     | 227<br>Ac<br>89  | 232<br>Th<br>90  | 231<br>Pa<br>91  | 238<br>U<br>92  | 237<br>Np<br>93 | 244<br>Pu<br>94  | 243<br>Am<br>95 |                 |                 | 251<br>Cf<br>98  | Es               | Fm               | Md               | and the same of th | 260<br>Lw<br>103        |

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 1. |         | omplete the following equations for the nuclear reactions                                                                             |         |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | i.      | $^{27}_{14}Si \longrightarrow ^{27}_{13}Al + \dots$                                                                                   | (01     |
|    |         | mark)                                                                                                                                 |         |
|    | ii.     | $^{241}_{95}Am + ^{4}_{2}He \longrightarrow ^{243}_{97}Bk + \dots$                                                                    | (01     |
|    |         | mark)                                                                                                                                 |         |
|    | iii.    | $^{238}U + ^{1}_{0}n \longrightarrow ^{239}_{93}Np + \dots$                                                                           | (01     |
|    |         | mark)                                                                                                                                 |         |
|    | (b). In | an experiment, the rate of radioactive decay of bromine                                                                               |         |
|    |         | creased by <b>25%</b> in <b>96</b> minutes. Calculate the <b>half-life</b> of b                                                       | romine. |
|    | (02     | 2 marks)                                                                                                                              |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |
| 2. |         | ene <b>R</b> , diffuses through a porous partition in <b>2</b> minutes. Use conditions, the same volume of oxygen gas diffuses in $1$ |         |
|    | a) (    |                                                                                                                                       | 01½     |
|    |         |                                                                                                                                       |         |
|    |         |                                                                                                                                       |         |

|    |       | (ii). Determine the <b>molecular formula</b> of $R$ . (marks)                            | (02 |
|----|-------|------------------------------------------------------------------------------------------|-----|
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    | b)    | Write equations to show how <b>R</b> can be <b>synthesized</b> from <b>propanone</b> .   |     |
|    |       | (02 marks)                                                                               |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
|    |       |                                                                                          |     |
| 3. | water | manufacture of sulphuric acid, sulphur trioxide is <b>not</b> diss, but another solvent. |     |
|    | a)    | (i). State why water is <b>not</b> used as a solvent. mark)                              | (01 |


|    |                 | (ii).Write equation(s) to show the formation of sulphuric acid from sulphur trioxide gas. (03 marks)                                                                                                                                                 |
|----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                 |                                                                                                                                                                                                                                                      |
|    |                 |                                                                                                                                                                                                                                                      |
|    |                 |                                                                                                                                                                                                                                                      |
|    |                 |                                                                                                                                                                                                                                                      |
|    | b)              | Write equation for the reaction between sulphuric acid and hydrogen bromide. (01½ marks)                                                                                                                                                             |
|    |                 |                                                                                                                                                                                                                                                      |
|    |                 |                                                                                                                                                                                                                                                      |
|    |                 |                                                                                                                                                                                                                                                      |
| 4. | (a)             | State <b>one</b> colligative property of a dilute solution other than depression of freezing point or elevation of boiling point of a                                                                                                                |
|    | solve           | nt.<br>(01                                                                                                                                                                                                                                           |
|    | mark            | ·                                                                                                                                                                                                                                                    |
|    |                 |                                                                                                                                                                                                                                                      |
|    | (b)<br>in<br>be | Ethane-1, 2-diol HOCH <sub>2</sub> CH <sub>2</sub> OH, is used as an antifreeze for water car radiators. <b>Calculate</b> the <b>mass of ethane-1, 2-diol</b> that should added to <b>1kg</b> of water to prevent it from freezing at <b>-10°C</b> . |
|    | mark            | (03<br>s)                                                                                                                                                                                                                                            |
|    |                 | [Freezing point depression constant for water = 1.86°Ckgmol <sup>-1</sup> ]                                                                                                                                                                          |
|    | •••             |                                                                                                                                                                                                                                                      |
|    | •••             |                                                                                                                                                                                                                                                      |

| Nylon-6, 6, $\frac{H}{N-(CH_2)_6}$ NHCO $\frac{O}{(CH_2)_4}$ is a synthetic polym                            |
|--------------------------------------------------------------------------------------------------------------|
|                                                                                                              |
| formed by condensation polymerisation.  5. (a). State what is meant by the term condensation polymerization. |
| (01 mark)                                                                                                    |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
| (b). Write the <b>structural formulae</b> of the monomers of <b>nylon-6, 6</b> .                             |
| (01                                                                                                          |
| mark)                                                                                                        |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
| (c).Name:                                                                                                    |
| <ul> <li>i. One natural polymer that is formed by condensation polymerization. (01</li> </ul>                |
| mark)                                                                                                        |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |

|    |                | ii. The <b>monomers</b> of the polymer in (c) (i). mark)                                                    | (0½            |
|----|----------------|-------------------------------------------------------------------------------------------------------------|----------------|
|    |                |                                                                                                             |                |
|    |                |                                                                                                             |                |
|    | (d).St<br>mark | tate <b>one</b> use of the polymer you have named in (c) (i).                                               | (0½            |
|    | •••            |                                                                                                             |                |
|    |                | •••••                                                                                                       |                |
| 6. | (a).           | State two properties in which chromium behaves as a tra-<br>element.                                        | nsition<br>(01 |
|    | mark<br>       | )                                                                                                           |                |
|    |                |                                                                                                             |                |
|    |                |                                                                                                             |                |
|    | chron          | Write the equation for the reaction that takes place wher nium (III) sulphate is dissolved in water. marks) | 1              |
|    |                |                                                                                                             |                |
|    |                |                                                                                                             |                |
|    | (c).           | Magnesium ribbon was added to a solution of chromium sulphate.                                              | (III)          |
|    |                | i. State what was observed.<br>mark)                                                                        | (01            |
|    |                |                                                                                                             |                |
|    |                |                                                                                                             |                |
|    |                | ••••••                                                                                                      |                |

| ii.  | Write equation for the reaction that took place. | $(01\frac{1}{2})$ |
|------|--------------------------------------------------|-------------------|
| mark | xs)                                              |                   |
|      | <i>'</i>                                         |                   |
|      |                                                  |                   |
|      |                                                  |                   |
|      |                                                  |                   |
|      |                                                  |                   |
|      |                                                  |                   |

7. The graph below shows how the total vapour pressure of a mixture of water and nitrobenzene varies with temperature.



| a) | State the temperature at which the mixture boils at 760mm |     |  |  |  |  |
|----|-----------------------------------------------------------|-----|--|--|--|--|
|    | pressure.                                                 | (01 |  |  |  |  |
|    | mark)                                                     |     |  |  |  |  |
|    |                                                           |     |  |  |  |  |
|    |                                                           |     |  |  |  |  |
|    |                                                           |     |  |  |  |  |
|    |                                                           |     |  |  |  |  |
|    |                                                           |     |  |  |  |  |

|    | b)         | The partial vap               | _                | of nitrobenzene at th             | ne boiling point |
|----|------------|-------------------------------|------------------|-----------------------------------|------------------|
|    |            |                               | _                | itrobenzene by mas                | s that will be   |
|    |            | <del>-</del>                  | _                | s steam distilled at n            |                  |
|    |            |                               |                  | 1, $C = 12$ , $N = 14$ , $O = 14$ |                  |
|    |            | (04 marks)                    | c5541 c. (11 — ) | 1, 0 - 12, 11 - 11, 0             | - 10 <i>)</i>    |
|    |            | ,                             |                  |                                   |                  |
|    |            |                               |                  |                                   | •••••            |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
| 8. | (a).<br>be | State the condi-<br>effected. | tion(s) under    | which the following               | conversions can  |
|    | DC         | CH2                           |                  | CH <sub>2</sub> Cl                |                  |
|    | i). [      | on,                           | to               | enzer enzer                       | (01½ marks)      |
|    | Cor        | nditions:                     |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    |            |                               |                  |                                   |                  |
|    | ii). [     | CH <sub>3</sub>               | to               | CH <sub>3</sub>                   | (01½ marks)      |
|    | Cor        | nditions:                     |                  |                                   |                  |

|    | (b). Write a mechanism for the reaction leading to the formation of:                                                                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\begin{array}{c c} CH_3 & \\ \hline \\ Cl & \\ \end{array}$ From $\begin{array}{c c} CH_3 & \\ \hline \end{array} (02 \text{ marks})$                    |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
| 9. | Explain the following observations.  a) Silicon (IV) chloride is <b>hydrolyzed</b> by <b>water</b> while carbon tetrachloride is <b>not</b> . (03½ marks) |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |
|    |                                                                                                                                                           |

| b) Lead (IV) chloride <b>exists</b> but lead (IV) bromide <b>does not</b> . (02 marks) |
|----------------------------------------------------------------------------------------|
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
| SECTION B-54 MARKS                                                                     |
| ATTEMPT ANY SIX QUESTIONS IN THIS SECTION.                                             |
| 10.Complete each of the following equations and write the suggested                    |
| mechanism for the reaction.                                                            |
| a) CH <sub>3</sub> HBr (02½ marks)                                                     |
| Mechanism:                                                                             |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
|                                                                                        |
| b) $CH_3COBr \xrightarrow{CH_3CH_2NH_2}$ Heat $(03\frac{1}{2} \text{ marks})$          |
| <u>Mechanism</u> :                                                                     |
|                                                                                        |
|                                                                                        |

|                   |                                                                                       | •••••             |
|-------------------|---------------------------------------------------------------------------------------|-------------------|
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
| ,                 | HCHO KCN/H <sup>+</sup> (aq)                                                          | (03 marks)        |
| c)                | Mechanism:                                                                            | (05 marks)        |
|                   | -100mmom                                                                              |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
| 11.(a). S<br>mark | State what is meant by the term <b>buffer solution</b> .                              | (01               |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
| (b).              | Calculate the <b>pH</b> of the solution formed when <b>0.61g</b> of                   | benzoic           |
| acid              | is dissolved in 1dm³ of a 0.02M sodium benzoate.                                      | $(02\frac{1}{2})$ |
| mark              | s)<br>( <b>Ka</b> of benzoic acid = <b>6.3 x 10<sup>-5</sup> moldm<sup>-3</sup></b> ) |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |
|                   |                                                                                       |                   |

| (c).<br>few | Explain what would happen to the <b>pH of the solution</b> drops of the following reagents were added: | on in (b) if a |
|-------------|--------------------------------------------------------------------------------------------------------|----------------|
| icvv        | i. Potassium hydroxide solution. marks)                                                                | (03            |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             | ii. Hydrochloric acid.<br>marks)                                                                       | (02½           |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |
|             |                                                                                                        |                |

12.(a). When **0.1g** of aluminium chloride was vaporized at **350°C** and pressure of **1atmosphere**, **19.2cm³** of vapour was formed.

|       | (02 marks)                                                                                                                                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       | ii. Write the <b>molecular formula</b> of aluminium chloride in the gaseous state at $350^{\circ}$ C. (Al = 27, Cl = 35.5) (01 mark)                                |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
| (b).  | Aluminium chloride is normally contaminated by traces of iron                                                                                                       |
| (III) | <ul><li>chloride.</li><li>i. Name one reagent that can be used to detect the presence of iron (III) ion in a contaminated solution of aluminium chloride.</li></ul> |
|       | mark)                                                                                                                                                               |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       | ii. State what would be observed if the contaminated aluminium chloride solution was treated with the named reagent in (b) (i).                                     |
|       | (0½ mark)                                                                                                                                                           |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |

i. Calculate the **relative molecular mass** of aluminium chloride.

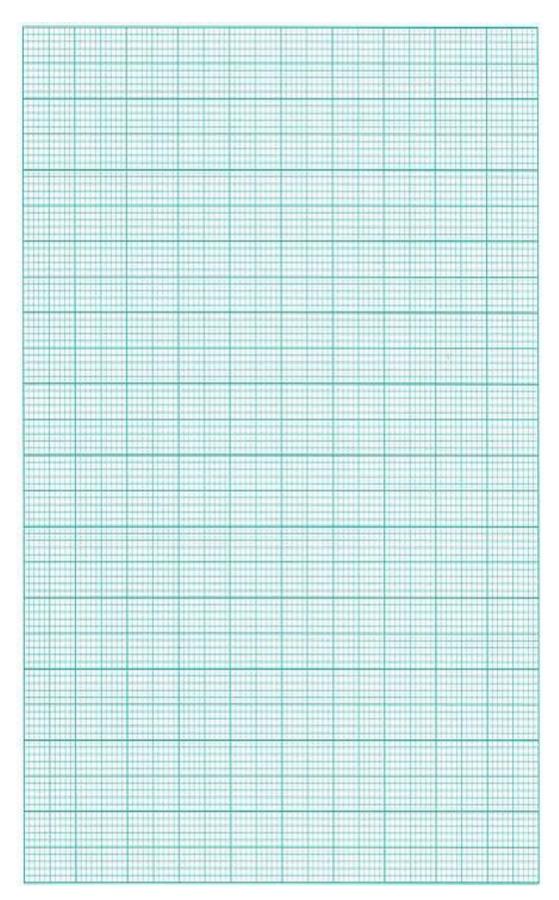
| i              | iii. Write equation for the reaction leading to the observation y             |                              |
|----------------|-------------------------------------------------------------------------------|------------------------------|
|                | have stated in (b) (ii).<br>marks)                                            | (01½                         |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                | Water was added drop wise to aluminium chloride.  i. State what was observed. | (01                          |
|                | mark)                                                                         | (01                          |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                |                                                                               |                              |
| i              | i. Write equation for the reaction that took place. marks)                    | (01½                         |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                |                                                                               |                              |
| (d).St<br>mark | tate <b>one use</b> of aluminium chloride in organic synthesis<br>)           | . (0½                        |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                |                                                                               |                              |
|                | Draw the structure and name the shape of each of the table below.             | species in $(04\frac{1}{2})$ |

|   | Species            | Structure                                               | Shape             |                |
|---|--------------------|---------------------------------------------------------|-------------------|----------------|
|   | $BF_3$             |                                                         |                   |                |
|   | SnCl <sub>2</sub>  |                                                         |                   |                |
|   | ClO <sub>3</sub> - |                                                         |                   |                |
| ( |                    | quation for the reaction betworon trifluorude and ammon |                   | (01½           |
|   |                    |                                                         |                   |                |
|   | marks)             | n (II) chloride and iron (III)                          |                   | (01½           |
|   |                    |                                                         |                   |                |
|   |                    |                                                         |                   |                |
|   |                    | cidified potassium iodide solulorate (V) solution.      | ution and aqueous | sodium<br>(01½ |

| ł.(a). \ | Write: i.Equation for the <b>ionizatio</b> | on of methanoic acid in water.        | 6     |
|----------|--------------------------------------------|---------------------------------------|-------|
|          | marks)                                     | (01)                                  | , 2   |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
| j        | <del>-</del>                               | id dissociation constant Ka, for      | 01    |
|          | methanoic acid.<br>mark)                   | (1                                    | 01    |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
|          |                                            |                                       |       |
| (b).     | The molar conductivities                   | of some electrolytes at infinite dilu | ıte a |
| ( )      | 25°C are given in the table                |                                       |       |
|          | Electrolyte                                | molar conductivity at infinite        |       |
|          | Sodium chloride                            | dilution (Scm²/mol) 113.0             |       |
|          | Sodium methanoate                          | 101.0                                 |       |
|          | Sodium hydroxide                           | 225.2                                 |       |
|          | Hydrochloric acid                          | 397.8                                 |       |
|          | Calculate the molar condu                  | uctivity of methanoic acid at infinit | te    |
|          | dilution.                                  | (0                                    | 3     |
|          | KS)                                        |                                       |       |

| (c).            | The molar conductivity of a <b>0.05M</b> methanoic acid solut <b>24.328Scm<sup>2</sup>/mol</b> at <b>25°C</b> . Calculate the:                                                    | tion is         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                 | i. Degree of <b>ionization</b> of methanoic acid at <b>25°C</b> . marks)                                                                                                          | (01½            |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 | ii. Dissociation constant <b>Ka</b> of methanoic acid at <b>25</b> marks)                                                                                                         | ° <b>C</b> .(02 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
|                 |                                                                                                                                                                                   |                 |
| follov<br>write | e one functional group that can be identified using each owing reagents. In each case state what would be observed equation for the reaction that would take place: romine water: |                 |
| Fu              | inctional group.  ark)                                                                                                                                                            | (01             |
|                 |                                                                                                                                                                                   |                 |
| ••••            |                                                                                                                                                                                   |                 |
| ••••            |                                                                                                                                                                                   |                 |
|                 | oservation.<br>ark)                                                                                                                                                               | (01             |

|    | Equation.                     | (01    |
|----|-------------------------------|--------|
|    | mark)                         |        |
|    |                               | •••••• |
|    |                               |        |
|    |                               |        |
| b) | 2, 4-dinitrophenyl hydrazine. |        |
|    | Functional group.             | (01    |
|    | mark)                         |        |
|    |                               |        |
|    |                               |        |
|    |                               |        |
|    |                               |        |
|    | Observation.                  | (01    |
|    | mark)                         | (01    |
|    |                               |        |
|    |                               |        |
|    |                               |        |
|    |                               |        |
|    |                               |        |
|    | Equation.                     | (01    |
|    | mark)                         |        |
|    |                               |        |
|    |                               |        |
|    |                               | •••••• |
|    |                               |        |
| ره | Codium garbanata              |        |
| C) | Sodium carbonate.             | (01    |
|    | Functional group. mark)       | (01    |
|    |                               |        |


| ••••                          |                                                                                                                                                     |             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                               | ••                                                                                                                                                  |             |
| Ob                            | oservation.                                                                                                                                         | (01         |
| ma                            | ark)                                                                                                                                                | `           |
|                               |                                                                                                                                                     |             |
|                               |                                                                                                                                                     |             |
|                               |                                                                                                                                                     |             |
|                               | uation.                                                                                                                                             | (01         |
| III                           | ark)                                                                                                                                                |             |
|                               |                                                                                                                                                     |             |
|                               |                                                                                                                                                     |             |
|                               |                                                                                                                                                     |             |
|                               | ng the extraction of copper from copper pyrites, copper pyr                                                                                         | ites is     |
| bubb)<br>impu                 | ed and agitated with water/oil mixture. Compressed air is led through the mixture which is then filtered, roasted and re molten copper is obtained. |             |
| bubbl<br>impu<br>a) Sta       | led through the mixture which is then filtered, roasted and                                                                                         | finally     |
| bubbl<br>impu<br>a) Sta       | led through the mixture which is then filtered, roasted and re molten copper is obtained.<br>ate the role of:                                       |             |
| bubbl<br>impu<br>a) Sta       | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of:  Oil.                                    | finally     |
| bubbl<br>impu<br>a) Sta       | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of:  Oil.                                    | finally     |
| bubbl<br>impu<br>a) Sta       | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of:  Oil.                                    | finally     |
| bubbi<br>impu<br>a) Sta<br>i. | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of: Oil. mark)                               | finally     |
| bubbi<br>impu<br>a) Sta<br>i. | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of: Oil. mark)                               | finally (01 |
| bubbi<br>impu<br>a) Sta<br>i. | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of: Oil. mark)                               | finally (01 |
| bubbi<br>impu<br>a) Sta<br>i. | led through the mixture which is then filtered, roasted and re molten copper is obtained. ate the role of: Oil. mark)                               | finally (01 |

| b) | Write equation for the reaction that occurs when copper roasted. marks)                                                 | pyrites is<br>(01½ |
|----|-------------------------------------------------------------------------------------------------------------------------|--------------------|
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
| c) | Explain briefly how impure copper can be refined. marks)                                                                | (04                |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
| d) | Explain why it is advantageous to have a sulphuric acid manufacturing plant near a copper extraction plant. (01½ marks) |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    |                                                                                                                         |                    |
|    | ). State what is meant by the term:  Order of a reaction.  mark)                                                        | (01                |

| ii.                                                         | Half-life of a reaction mark) | l.       |           |          |       | (     | 01    |
|-------------------------------------------------------------|-------------------------------|----------|-----------|----------|-------|-------|-------|
|                                                             |                               |          |           |          |       |       |       |
|                                                             |                               |          |           |          |       | ••••• |       |
|                                                             |                               |          |           |          |       |       |       |
|                                                             |                               |          |           |          |       |       |       |
| b). The table below shows the kinetic data obtained for the |                               |          |           |          |       |       |       |
| ydro                                                        | olysis of methyl e            | ethanoat | e in acio | dic medi | ia.   |       |       |
| [CH <sub>3</sub> COOCH <sub>3</sub> ](mol/dm <sup>3</sup> ) |                               | 0.241    | 0.161     | 0.109    | 0.073 | 0.046 | 0.034 |
| Time (minutes)                                              |                               | 0        | 60        | 120      | 180   | 240   | 320   |

Plot a graph of **concentration** of methyl ethanoate **against time**. (03arks

)



(c). Use the graph in (b) above to determine the:

i. Half-life of the reaction. marks) (01½

| ii.  | Order of the reaction with respect to $CH_3COOCH_3$ . Give for your answer. mark) | (01  |
|------|-----------------------------------------------------------------------------------|------|
|      |                                                                                   |      |
|      |                                                                                   |      |
| mark |                                                                                   | (01½ |
|      |                                                                                   |      |
|      |                                                                                   |      |
|      |                                                                                   |      |
|      |                                                                                   |      |
|      |                                                                                   |      |

## THE PERIODIC TABLE

| 1                | 2                |                  |                  |                 |                  |                  |                  |                  |                  |                 |                  | 3                | 4                | 5               | 6                | 7                | 8                     |
|------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|------------------|-----------------------|
| 1.0<br>H<br>1    |                  |                  |                  |                 |                  |                  |                  |                  |                  |                 |                  |                  |                  |                 |                  | 1.0<br>H         | 4.0<br>Ho<br>2        |
| 6.9<br>Li<br>3   | 9.0<br>Be        | 1                |                  |                 |                  |                  |                  |                  |                  |                 |                  | 10.8<br>B<br>5   | C                | 14.0<br>N<br>7  | 16.0<br>O<br>8   | 19.0<br>F<br>9   | 20.2<br>Ne<br>10      |
|                  | 24.3<br>Mg<br>12 |                  |                  |                 |                  |                  |                  |                  |                  |                 |                  | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15 | 32.1<br>S<br>16  | 35.4<br>Cl<br>17 |                       |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 | 45.0<br>Sc<br>21 | 47.9<br>Ti<br>22 | 50.9<br>V<br>23 | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 | 55.8<br>Fe<br>26 | 58.9<br>Co<br>27 | 58.7<br>Ni<br>28 |                 | 65.7<br>Zn<br>30 |                  | 72.6<br>Ge<br>32 |                 |                  | 020000000        | 83.8<br>Kr<br>36      |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39  | 91.2<br>Zr<br>40 |                 |                  | 98.9<br>Tc<br>43 | 101<br>Ru<br>44  | 1                | 106<br>Pd<br>46  | 108<br>Ag<br>47 | 112<br>Cd<br>48  | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51 | 128<br>Te<br>52  | 127<br>I<br>53   | 131<br>Xe<br>54       |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57  | 178<br>Hf<br>72  | 181<br>Ta<br>73 | 184<br>W<br>74   | 186<br>Re<br>75  |                  | 1                | 195<br>Pt<br>78  | 197<br>Au<br>79 | 201<br>Hg<br>80  | 204<br>TI<br>81  | 207<br>Pb<br>82  | 209<br>Bi<br>83 | 209<br>Po<br>84  | 210<br>At<br>85  | 222<br>Rn<br>86       |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89  |                  |                 |                  | 2 13             | 4                | 9 55             |                  |                 |                  |                  |                  |                 |                  |                  | 2   3<br>89<br>0   13 |
|                  |                  | / B              |                  |                 |                  | 144<br>Nd<br>60  |                  | 150<br>Sm<br>62  | 152<br>Eu<br>63  |                 | 159<br>Tb<br>65  | 162<br>Dy<br>66  | 165<br>Ho<br>67  | 167<br>Er<br>68 | 169<br>Tm<br>69  | 173<br>Yb<br>70  | 175<br>Lu<br>71       |
|                  |                  |                  | 227<br>Ac<br>89  |                 | 231<br>Pa<br>91  |                  |                  |                  |                  |                 |                  | 251<br>Cf<br>98  | Es               | Fm              | 256<br>Md<br>101 | No               |                       |

**y** ===END===

## SECTION A (46 Marks) Answer all questions from this section A

| 1.               | <ul><li>(a) Write:</li><li>(i) equation for ionization of methanoic acid in water.</li></ul>                                                                                    |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $(1\frac{1}{2})$ | (1 ½ marks)                                                                                                                                                                     |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
| (½ m             | (ii) the expression for the acid constant Ka, for methanoic acid.<br>ark)                                                                                                       |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  | (b) The molar conductivity of 0.1M methanoic acid solution at 25°C is 16.2scm <sup>2</sup> mol <sup>-1</sup> . Calculate the:                                                   |  |  |  |  |
|                  | <ul> <li>(i) Degree of ionisation of methanoic acid at 25°C (molar conductivity of methanoic acid at infinite dilution at 25°C is 40 scm² mol¹)</li> <li>(1 ½ marks)</li> </ul> |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
| ½ mo             | (ii) Ionization constant, Ka for methanoic acid at 25°C. (1<br>rks)                                                                                                             |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |
|                  |                                                                                                                                                                                 |  |  |  |  |

| 2.<br>hydro | Write equations for the reaction of the following oxides with soc<br>oxide. | lium  |
|-------------|-----------------------------------------------------------------------------|-------|
| •           | (1 ½ marks each)                                                            |       |
|             | (a) Chromium (III) oxide.                                                   |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             | (b) Beryllium oxide                                                         |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             | (c) Lead (II) oxide                                                         |       |
|             |                                                                             |       |
|             |                                                                             |       |
| 3.          | Complete the following reaction equations and write the accepted nanism.    | 1     |
| Mech        |                                                                             |       |
|             | a) $cH_3c \equiv cH$ $\frac{H_2O/H^+}{Hg_*^{2+}60^\circ C}$                 |       |
|             | (3marks)                                                                    |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             |       |
|             |                                                                             | ••••• |
|             |                                                                             |       |
|             |                                                                             |       |

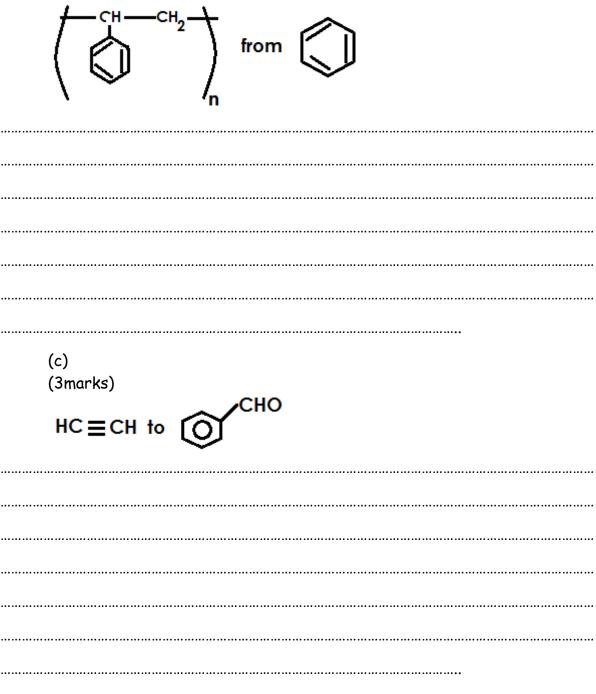
|             | b) CH <sub>3</sub> CH = CH <sub>2</sub> + HCI                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                 |
|             |                                                                                                                                                 |
| 4.<br>(1mai | (a) State what is meant by the term <b>diagonal relationship?</b> .<br>rk)                                                                      |
|             |                                                                                                                                                 |
|             | (b) State three reasons why lithium and magnesium resemble. marks)                                                                              |
|             |                                                                                                                                                 |
|             |                                                                                                                                                 |
|             | (c) Mention three properties to show the diagonal relationship between lithium and magnesium. (3marks)                                          |
|             |                                                                                                                                                 |
|             |                                                                                                                                                 |
| 5.          | 20cm³ of a gaseous hydrocarbon, X was exploded with 100cm³ of oxygen.  After explosion, the volume and cooling of the residual gas was found to |

|    | be 90cm <sup>3</sup> . On addition of concentrated potassium hydroxide, the volume reduced to 50cm <sup>3</sup> .  (a) Determine the molecular formula of X.  (2marks) |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                        |
|    | (b) X reacts with ammoniacal copper (I) chloride solution.                                                                                                             |
|    | (i) State what is observed<br>(1mark)                                                                                                                                  |
|    | (ii) Write equation for the reaction that takes place. (1mark)                                                                                                         |
| 6. | (a) Synthetic rubber (Z) was made from monomers with structure.                                                                                                        |
|    | CI (i) State the conditions for the reaction. (1mark)                                                                                                                  |
|    | (ii) Write the equation leading the formation of Z (1mark)                                                                                                             |
|    |                                                                                                                                                                        |

|        | (iii) Name the type of reaction in a(ii)                                                                                          | ( ½ mark)    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
|        |                                                                                                                                   | nd to have   |
|        | (i) the molar mass of Z<br>marks)                                                                                                 | (2 ½         |
|        | (ii) the number of monomers (n)                                                                                                   | (1 ½         |
|        | marks)                                                                                                                            |              |
|        |                                                                                                                                   |              |
| 7.<br> | (a) State <b>Raoult's law</b> of relative lowering of vapour pressure.                                                            | (1marks)     |
|        | (b)(i) Calculate the vapour pressure of a solution containing 18g<br>(C6H12O6) in 50g of water at 60°C is 150mmHg.<br>(2 ½ marks) | g of glucose |
|        |                                                                                                                                   |              |
|        | (ii) State any three assumptions made in b(i) marks)                                                                              | (1 ½         |

| 8.   | Sodium propanoate undergoes hydrolysis when dissolved in water. a) Write equation for the hydrolysis of sodium propanoate (1mark)                                                                                                     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | b) Write the expression for the hydrogen constant, Kh<br>(1mark)                                                                                                                                                                      |
|      | c) The hydrolysis constant,K <sub>h</sub> for sodium propaonate is 5.9 x 10 <sup>-10</sup> moldm <sup>-3</sup> at 25°C. What is the concentration of hydrogen ions in solution at equilibrium for a 0.1M sodium propanoate?  (2marks) |
|      |                                                                                                                                                                                                                                       |
| 9.   | (i) Define the term complex ion                                                                                                                                                                                                       |
| (1mc | nrk)                                                                                                                                                                                                                                  |

| (ii) Explain why transition metals form may complexes $\frac{1}{2}$ marks) |                                                                                          |                     |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------|--|
|                                                                            |                                                                                          |                     |  |
| (b) Complete the (2marks)                                                  | table below.                                                                             |                     |  |
| Complex ion                                                                | Oxidation state of metal ion                                                             | Name of complex ion |  |
| (i) Fe(CN) <sub>6</sub> <sup>3-</sup>                                      |                                                                                          |                     |  |
| (ii) CuCl <sub>4</sub> <sup>2-</sup>                                       |                                                                                          |                     |  |
| 10. a) When red lead                                                       | swer six questions from this loxide, Pb3O4 was heated with te equation for the reaction. |                     |  |
| (b)The mixture f<br>concentrated hyd<br>(i) State what wa<br>(1mark)       |                                                                                          | residue warmed with |  |
| (ii) Write equation $\frac{1}{2}$ marks)                                   | on for the reaction                                                                      | (1                  |  |


| (i) To the | <br>trate from (b) wa<br>first portion was<br>ved and write equ | added aqueous  | s potassium iodide. Sta                         | te wh  |
|------------|-----------------------------------------------------------------|----------------|-------------------------------------------------|--------|
|            |                                                                 |                |                                                 |        |
|            | •                                                               | •              | ness and then heated s<br>ion for the reaction. | trong  |
|            |                                                                 |                |                                                 |        |
|            |                                                                 |                |                                                 |        |
| Name reac  | gent(s) that can b                                              | e used to dist | inguish between the fo                          | llowir |
| a) (3m     | arks)                                                           |                | e what is observed.                             |        |
|            | and                                                             | OH             |                                                 |        |
| •          |                                                                 |                |                                                 |        |
| Reagent    |                                                                 |                |                                                 |        |

| (b) Ethanoic acid and chloroethanoic acid |
|-------------------------------------------|
| Reagent                                   |
|                                           |
|                                           |
|                                           |
|                                           |
| Observations.                             |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
| (c)                                       |
| $\sim 1$                                  |
|                                           |
| <b>~</b>                                  |
| Reagent                                   |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
| Observations                              |
|                                           |
|                                           |

| 12.    | (a) State three properties in which manganese differs from magnesium.                                                                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (1 ½ marks)                                                                                                                                                                                                                                                     |
|        |                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
| 1/2 ma | (b) Write equation to show the reduction of manganate (VII) ion in  (i) Acidic medium  (1)  rks)                                                                                                                                                                |
|        |                                                                                                                                                                                                                                                                 |
|        | (ii) Allaslina madium                                                                                                                                                                                                                                           |
| 1/2 ma | (ii) Alkaline medium (1<br>rks)                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
|        | <ul> <li>(c) State what is observed when drops of acidified potassium manganate</li> <li>(VII) solution are added to each of the following solutions. In each case, write the equation of reaction.</li> <li>(i) Hydrogen peroxide</li> <li>(2marks)</li> </ul> |
|        |                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                 |
| (2ma   | (ii) Hot sodium oxalate solution.<br>rks)                                                                                                                                                                                                                       |

|       | (d) State one reason why potassium manganate (VII) is not a good primary standard in volumetric analysis ( $\frac{1}{2}$ mark)                                                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (a) State three characteristics of a <b>chemical equilibrium</b> . (1 ks)                                                                                                                                                                         |
|       | (b) Dinitrogentetraoxide dissociates at $40^{\circ}C$ and 1 atm according to the following equation. $N_2O_{4(g)} = 2NO_{2(g)} \qquad \Delta H = +57 \text{ KJmol}^{-1}$ (i) Write an expression for the equilibrium constant, Kp ( $\frac{1}{2}$ |
| mark) | (1) White an expression for the equilibrium constant, tip                                                                                                                                                                                         |
| (2mar | (ii) Draw a labelled energy level diagram for the reaction in (b) ks)                                                                                                                                                                             |
|       | (c) The reaction mixture in (b) was found to contain 60% by volume of nitrogen dioxide. Calculate the equilibrium constant Kp at 60°C for the                                                                                                     |

|        | reaction.                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------|
|        | (3marks)                                                                                                                     |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
| •••••• |                                                                                                                              |
|        | <ul><li>(e) Explain the effect of increasing pressure on the position of the above<br/>equilibrium.</li></ul>                |
|        | (2marks)                                                                                                                     |
|        | · · · · · · · · · · · · · · · · · · ·                                                                                        |
|        |                                                                                                                              |
| •••••  |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
| 14.    | Write equations to show how the following compounds can be synthesized and in each case indicate the conditions of reaction. |
|        |                                                                                                                              |
|        | (a) $CH_2 = CH_2$ from $CH_3CH_2COOH$                                                                                        |
|        | (3marks)                                                                                                                     |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
|        |                                                                                                                              |
| •••••  |                                                                                                                              |
|        |                                                                                                                              |
|        | (b)                                                                                                                          |
|        | (3marks)                                                                                                                     |



15. The phase diagram for a mixture of metals  ${\bf P}$  and  ${\bf Q}$  is shown below.



| (   | (c)         | Using the diagram, estimate the melting point of; (1mark)                                 |
|-----|-------------|-------------------------------------------------------------------------------------------|
|     | (i)         | P                                                                                         |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     | (ii)        | Q                                                                                         |
|     |             |                                                                                           |
|     |             |                                                                                           |
| (   | (d)         | Describe what would happen if a mixture containing 50% by mass of $\ensuremath{\text{P}}$ |
|     |             | and Q is cooled from 410°C to 270°C.                                                      |
|     |             | (3marks)                                                                                  |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     |             |                                                                                           |
| (   | (e)         | State one difference and one similarity between the substance at                          |
|     | <i>(</i> :\ | point M and a pure compound                                                               |
|     | (i)         | difference<br>(1mark)                                                                     |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     |             |                                                                                           |
|     | (ii)        | ·                                                                                         |
|     |             | (1mark)                                                                                   |
|     |             |                                                                                           |
|     | •••••       |                                                                                           |
|     |             | ······································                                                    |
| 16. |             | Compound Y contains by mass 22.86% oxygen, 8.57% hydrogen and the                         |

| ½ mar  | (i) Calculate the empirical formula of Y<br>ks)                                                                                                                                   | (2         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|        |                                                                                                                                                                                   |            |
|        |                                                                                                                                                                                   |            |
|        |                                                                                                                                                                                   |            |
|        | (ii) When 0.30g of Y is vapourised at $80^{\circ}C$ and $700$ mmHg pressure, it occupied a volume of $134.77$ cm $^3$ . Determine the molecular formula of $(3\frac{1}{2}$ marks) | <b>′</b> . |
|        |                                                                                                                                                                                   |            |
| (1marl | (b) Y forms a yellow precipitate with 2,4-dinitrophenyl hydrazine and does not react with Tollen's reagent. Identify Y Identify Y. <)                                             |            |
|        |                                                                                                                                                                                   |            |
| above  | (c) Write equation for the formation of the yellow precipitate in (b) (2marks)                                                                                                    |            |
|        |                                                                                                                                                                                   |            |
|        |                                                                                                                                                                                   |            |
|        |                                                                                                                                                                                   |            |

| 17. | Explain the following observations (a) phenylamine is a weaker base than ethyl amine (3marks) |          |
|-----|-----------------------------------------------------------------------------------------------|----------|
|     |                                                                                               |          |
|     |                                                                                               |          |
|     | (b) The PH of a 0.1M phenol is 6.5 while that of cyclohexanol is (3marks)                     | 7        |
|     |                                                                                               |          |
|     | (c) Hydrofluoric acid is a weaker acid than hydrobromic acid.                                 | (3marks) |
|     |                                                                                               |          |

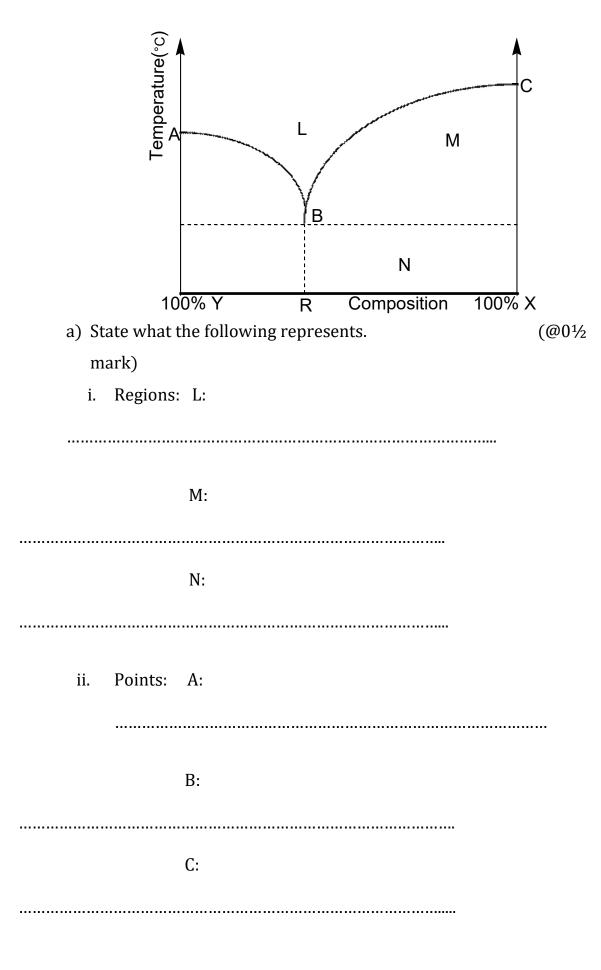
## THE PERIODIC TABLE

| 1                | 2                |                 |                  |                 |                  |                  |                  |                 |                 |                 |                  | 3                | 4               | 5               | 6                                       | 7                | 8               |
|------------------|------------------|-----------------|------------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|-----------------------------------------|------------------|-----------------|
| 1.0<br>H<br>1    |                  |                 |                  |                 |                  |                  |                  |                 |                 |                 |                  |                  |                 |                 |                                         | 1.0<br>H         | 4.0<br>H        |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | 1               |                  |                 |                  |                  |                  |                 |                 |                 |                  | 10.8<br>B<br>5   | 12.0<br>C<br>6  | 14.0<br>N<br>7  | 16.0<br>O<br>8                          | 19.0<br>F<br>9   | 20.2<br>N<br>10 |
|                  | 24.3<br>Mg<br>12 |                 |                  |                 |                  |                  |                  |                 |                 |                 |                  | 27.0<br>Al<br>13 |                 | 31.0<br>P<br>15 | 32.1<br>S<br>16                         | 35.4<br>Cl<br>17 |                 |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                 |                  |                 | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 | 55.8<br>Fe<br>26 |                 |                 |                 | 65.7<br>Zn<br>30 |                  | 1               |                 | 100000000000000000000000000000000000000 | 22/12/2019/20    | 1               |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39 | 91.2<br>Zr<br>40 | 1000            | 95.9<br>Mo<br>42 | 1                | 101<br>Ru<br>44  | 103<br>Rh<br>45 | 106<br>Pd<br>46 | 108<br>Ag<br>47 | 112<br>Cd<br>48  | 115<br>In<br>49  | 119<br>Sn<br>50 | 122<br>Sb<br>51 | 128<br>Te<br>52                         | 127<br>I<br>53   | 131<br>Xe<br>54 |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57 | 178<br>Hf<br>72  | 181<br>Ta<br>73 | 184<br>W<br>74   | 186<br>Re<br>75  | 190<br>Os<br>76  | 192<br>Ir<br>77 | 195<br>Pt<br>78 | 197<br>Au<br>79 | 201<br>Hg<br>80  | 204<br>TI<br>81  | 207<br>Pb<br>82 | 209<br>Bi<br>83 | 209<br>Po<br>84                         | 210<br>At<br>85  | 222<br>Rn<br>86 |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89 |                  |                 |                  | 2 13<br>2 135    |                  | 9 -85           |                 |                 |                  | 2 199            |                 |                 |                                         |                  | 2 13            |
| 2                |                  | 8 1             |                  | 140<br>Ce<br>58 | 141<br>Pr<br>59  | 144<br>Nd<br>60  | 147<br>Pm<br>61  | 150<br>Sm<br>62 | 152<br>Eu<br>63 | 157<br>Gd<br>64 | 159<br>Tb<br>65  | 162<br>Dy<br>66  | 165<br>Ho<br>67 | 167<br>Er<br>68 | 169<br>Tm<br>69                         | 173<br>Yb<br>70  | 175<br>Lu<br>71 |
|                  |                  | 3 8             | 227<br>Ac<br>89  | 232<br>Th<br>90 |                  |                  | 237<br>Np<br>93  |                 |                 | 247<br>Cm<br>96 |                  | 251<br>Cf<br>98  | Es              |                 | 256<br>Md<br>101                        |                  |                 |

**♥** ===END===

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1. Various concentrations of **X** and **Y** were reacted at a constant temperature. The table below shows the initial concentrations of **X** and **Y**, and their initial rates for the reaction.


| Experiments | [X] mol/dm <sup>3</sup> | [Y] mol/dm <sup>3</sup> | Initial rate (mol/s)   |
|-------------|-------------------------|-------------------------|------------------------|
| 1           | 0.2                     | 0.2                     | 3.5 x 10 <sup>-4</sup> |
| 2           | 0.4                     | 0.4                     | 1.4 x 10 <sup>-3</sup> |
| 3           | 0.8                     | 0.4                     | 5.6 x 10 <sup>-3</sup> |

| 3  |                                | 0.8                    | 0.4                       | 5.6 x 10 <sup>-3</sup> |      |
|----|--------------------------------|------------------------|---------------------------|------------------------|------|
| a) | marks)                         |                        | th respect to <b>X</b> ar |                        | (@0½ |
|    | ii. <b>Y:</b>                  |                        |                           |                        |      |
| b) | Give <b>reasons</b> for marks) | or your answer:        | s in <b>(a)</b> above.    |                        | (02  |
|    |                                |                        |                           |                        |      |
|    |                                |                        |                           | •••••                  |      |
|    |                                |                        |                           |                        |      |
|    |                                |                        |                           |                        |      |
| c) | Determine the marks)           | <b>overall order</b> o | f the reaction.           |                        | (0½  |
|    |                                |                        |                           |                        |      |
|    |                                |                        |                           |                        |      |
| d) | Calculate the <b>v</b> marks)  | alue for the rat       | <b>e constant</b> of the  | reaction.              | (01½ |
|    |                                |                        |                           |                        |      |
|    |                                |                        |                           | •••••                  |      |
|    |                                |                        |                           |                        |      |

| 2. |    | olid <b>Q</b> contains <b>9.37%</b> by mass magnesium, <b>10.39%</b> ni                                                                                                 | itrogen, |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |    | <ul><li>18% water and the rest is oxygen.</li><li>(i). Calculate the empirical formula of solid Q.</li><li>marks)</li></ul>                                             | (02      |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    | (ii).Determine the molecular formula of <b>Q</b> . mark)                                                                                                                | (01      |
|    |    | (RFM of Q = 256)                                                                                                                                                        |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |
|    | b) | Solution of <b>Q</b> reacts with <b>freshly prepared iron (II</b> the <b>presence of concentrated sulphuric acid</b> to for <b>ring</b> . Identify <b>Q</b> . (0½ mark) | -        |
|    |    |                                                                                                                                                                         |          |
|    |    |                                                                                                                                                                         |          |

|    | c)             | Write <b>equation for the reaction</b> that would take place heated. marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | if <b>Q</b> was (01½ |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 3. | pairs o        | a <b>reagent</b> that can be used to <b>distinguish</b> between the for compounds and in each case, <b>state what would be obtained</b> nembers of the pair was treated with the named reagent $H_3$ CHC $=$ CH $_3$ CH $_2$ CHC $=$ CH $_3$ CH $_$ | served if<br>nt.     |
|    | Reage<br>mark) | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (01                  |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    | Obser<br>marks | vations<br>s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (02                  |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    | b). [          | CHO and CH <sub>3</sub> CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|    | Reage<br>mark) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (01                  |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |

|    | Observations                                                                                                     | (02               |
|----|------------------------------------------------------------------------------------------------------------------|-------------------|
|    | marks)                                                                                                           |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
| 4. | Write equation for the reaction between aqueous sodium h solution and: marks)                                    | ydroxide<br>(@01½ |
|    | a) Chromium (III) oxide.                                                                                         |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    | b)Beryllium oxide.                                                                                               |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    | c) Tin (II) oxide.                                                                                               |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
|    |                                                                                                                  |                   |
| 5. | The <b>temperature-composition diagram</b> for a system contain components <b>X</b> and <b>Y</b> is shown below. | ning two          |



|    | iii. Curves: AB:                                                                                                                                          |          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |                                                                                                                                                           |          |
|    | BC:                                                                                                                                                       |          |
|    | b) State what would happen when a mixture of composition <b>R</b> is heated.  (0½ mark)                                                                   |          |
|    |                                                                                                                                                           |          |
| 6. | Complete the following equations and in each case, write a mechanism the reaction.  a). $(CH_3)_2C=CHCH_3$ HBr $(02\frac{1}{2} \text{ marks})$ Mechanism: |          |
|    |                                                                                                                                                           |          |
|    |                                                                                                                                                           |          |
|    |                                                                                                                                                           |          |
|    | b). $\bigcirc$ + CH <sub>3</sub> CH <sub>2</sub> COCl $\frac{\text{AlCl}_3}{50^{\circ}\text{C}}$                                                          | ź marks) |
|    | Mechanism:                                                                                                                                                |          |
|    |                                                                                                                                                           |          |

| solu<br>and | en a current of <b>0.65A</b> was passed through copper (II) su<br>tion using platinum electrodes for <b>35 minutes</b> , <b>0.0143g</b><br><b>0.113g</b> of oxygen gases were evolved. | of hydrog         |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| n           | Vrite <b>equation for the reaction</b> that took place at the: nark) Anode.                                                                                                            | (@01              |
| 1.          |                                                                                                                                                                                        |                   |
| ı           |                                                                                                                                                                                        |                   |
|             |                                                                                                                                                                                        |                   |
| ii.         | Cathode.                                                                                                                                                                               |                   |
|             |                                                                                                                                                                                        |                   |
| ,           |                                                                                                                                                                                        |                   |
| ,           |                                                                                                                                                                                        |                   |
| -           | etermine <b>the quantity of electricity</b> required to evolve t each electrode.                                                                                                       | <b>1mole</b> of g |
|             | At the anode.                                                                                                                                                                          | (02               |
|             |                                                                                                                                                                                        |                   |
|             |                                                                                                                                                                                        |                   |
|             |                                                                                                                                                                                        |                   |
|             |                                                                                                                                                                                        |                   |
|             |                                                                                                                                                                                        |                   |
| ••          |                                                                                                                                                                                        |                   |

| 8. | Write equation in each coeffected.                                     | ase show l | now the following  | conversions can be                      |  |
|----|------------------------------------------------------------------------|------------|--------------------|-----------------------------------------|--|
|    | a). CH <sub>2</sub> OH                                                 | from       | Benzene            | (02½ marks)                             |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    | b). CH <sub>3</sub> CONH <sub>2</sub>                                  | from       | Chloroethane       | (02½ marks)                             |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
| 9. | State what would be obs would take place when: marks)                  | erved and  | write equations fo | or the reaction that $(@02\frac{1}{2})$ |  |
|    | a) Excess concentrated hydrochloric acid was added to lead (II) oxide. |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |
|    |                                                                        |            |                    |                                         |  |

| b) Potassium iodide was added to copper (II) sulphate solution.                                      |
|------------------------------------------------------------------------------------------------------|
|                                                                                                      |
|                                                                                                      |
| ·······                                                                                              |
| SECTION B-54 MARKS ATTEMPT <u>ALL</u> QUESTIONS IN THIS SECTION.                                     |
| 10. The figure below shows the variation of the 1st electron affinity of the                         |
| ·                                                                                                    |
| elements in <b>Period 3</b> of the Periodic table.                                                   |
| First electron affinity (kJmof <sup>-1</sup> )                                                       |
| Explain each of the following observations.                                                          |
| a) There is a general increase in the <b>1</b> <sup>st</sup> <b>electron affinity</b> from sodium to |
| argon. $(01\frac{1}{2})$                                                                             |
| marks)                                                                                               |
| -7                                                                                                   |
|                                                                                                      |

| b)      | The 1st electron affinity of magnesium is higher than that aluminium.                                              |
|---------|--------------------------------------------------------------------------------------------------------------------|
|         | (04 marks)                                                                                                         |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
| c)      | The 1st electron affinity of phosphorous is less than that of sulphur.                                             |
|         | (03½ marks)                                                                                                        |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
|         |                                                                                                                    |
| 11.Silv | ver chloride dissolves in water according to the following equations. $AgCl_{(s)} = Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$ |
| a)      | Write the expression for the solubility product, Ksp of silver chloride.                                           |
|         | (01 mark)                                                                                                          |

| b)   | The electrolytic conductivity of a saturated solution of silve in water at <b>25°C</b> is <b>3.41 x 10</b> <sup>-6</sup> $\Omega$ <sup>-1</sup> cm <sup>-1</sup> and that of pure water <b>10</b> <sup>-6</sup> $\Omega$ <sup>-1</sup> cm <sup>-1</sup> . Calculate the <b>solubility product</b> of a saturated solution in the solution of a saturated solution of a saturated solution of silver chloride at <b>25°C</b> . (04½ marks) (The molar conductivities at infinite dilution of silver nitrate, potassium potassium chloride are <b>133.4</b> , <b>145.0</b> and <b>149.9</b> $\Omega$ <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> respectively silver nitrate. | er is <b>1.60 x</b> solution o |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| c)   | Ammonia solution was added to a solution containing silve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er                             |
|      | chloride.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
|      | i. State how the <b>solubility</b> of silver chloride was affected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (01                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| ma   | ark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| •••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| •••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(02\frac{1}{2})$              |
| ma   | arks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| •••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| •••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |

| 2.Manganese is a <b>d-block element</b> in the Periodic Table.  a) Define the term <b>d-block element</b> . (01 mark)                                                                                                                       |    |                                                   |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------|-------------|
| 2.Manganese is a <b>d-block element</b> in the Periodic Table.  a) Define the term <b>d-block element</b> . (01 mark)                                                                                                                       |    |                                                   |             |
| a) Define the term <b>d-block element</b> . (01 mark)                                                                                                                                                                                       |    |                                                   |             |
| mark)  (ii). State the common oxidation states exhibited by manganese in its compounds. (01½ marks)  (iii).Write the formulae of oxides of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)         |    | Define the term <b>d-block element</b> .          | (01         |
| mark)  (ii). State the common oxidation states exhibited by manganese in its compounds. (01½ marks)  (iii).Write the formulae of oxides of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)         |    |                                                   |             |
| mark)  (ii). State the common oxidation states exhibited by manganese in its compounds. (01½ marks)  (iii).Write the formulae of oxides of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)         |    |                                                   |             |
| mark)  (ii). State the common oxidation states exhibited by manganese in its compounds. (01½ marks)  (iii).Write the formulae of oxides of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)         |    |                                                   |             |
| mark)  (ii). State the common oxidation states exhibited by manganese in its compounds. (01½ marks)  (iii).Write the formulae of oxides of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)         |    |                                                   |             |
| (ii). State the <b>common oxidation states</b> exhibited by manganese in its compounds. (01½ marks)   (iii).Write the <b>formulae of oxides</b> of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks) | b) | •                                                 | (0½         |
| (ii). State the <b>common oxidation states</b> exhibited by manganese in its compounds. (01½ marks)   (iii).Write the <b>formulae of oxides</b> of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks) |    |                                                   |             |
| compounds. (01½ marks)   (iii).Write the <b>formulae of oxides</b> of manganese in each of the oxidation states you have stated in (b) (ii) above. (01½ marks)                                                                              |    |                                                   |             |
| oxidation states you have stated in (b) (ii) above. (01½ marks)                                                                                                                                                                             |    | compounds.                                        | nese in its |
| oxidation states you have stated in (b) (ii) above. (01½ marks)                                                                                                                                                                             |    |                                                   |             |
| oxidation states you have stated in (b) (ii) above.  (01½ marks)                                                                                                                                                                            |    | <b></b>                                           |             |
|                                                                                                                                                                                                                                             | _  | idation states you have stated in (b) (ii) above. | ne          |
|                                                                                                                                                                                                                                             |    |                                                   |             |
|                                                                                                                                                                                                                                             |    | ··                                                |             |

hydroxide and potassium nitrate to give a compound which when

| <b>purple</b> when acidified with sulphuric acid.                                                                                                    |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Identify:<br>i. <b>Y</b>                                                                                                                             | (01                  |
| mark)                                                                                                                                                | (01                  |
| mark)                                                                                                                                                |                      |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
| <ul><li>ii. The ion that gives the green solution its colour.<br/>mark)</li></ul>                                                                    | (01                  |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
| iii. The ion that gives the purple solution its colour, mark)                                                                                        | . (01                |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
| d)Write ionic equation for the reaction leading to the form purple solution. marks)                                                                  | ation of the<br>(01½ |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
|                                                                                                                                                      |                      |
| 13.Compound <b>T</b> , <b>C</b> <sub>3</sub> <b>H</b> <sub>6</sub> <b>O</b> reacts with <b>2</b> , <b>4-dinitrophenylhydrazi</b> yellow precipitate. | <b>ne</b> to form a  |
| a) Write the <b>names</b> and the <b>structural formulae</b> of all poss of <b>T</b> . marks)                                                        | ible isomers<br>(03  |

treated with water gives a **green solution**. The **green solution** turned

| b)     | <b>T</b> reacts with ammoniacal silver nitrate solution to form silver. Identify <b>T</b> . (01 Mark)                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                              |
| c)     | Write equation and indicate a mechanism for the reaction between <b>T</b> and 2, 4-dinitrophenylhydrazine under acidic condition. (05 marks) |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
| 14.(a) | ). (i). Sketch a graph to show the pH change when hydrochloric acid titrated with ammonia solution.                                          |
| (0)    | 1½ marks)                                                                                                                                    |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |

|                                 |                                                                                   |                           |                                         | ••••••        |
|---------------------------------|-----------------------------------------------------------------------------------|---------------------------|-----------------------------------------|---------------|
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
| (ii). Exp<br>marks)             | lain the <b>shape of yo</b> u                                                     | <b>ır sketch graph</b> ir | ı (a) (i).                              | (03½          |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |
| 0.1M s                          | ate the <b>pH</b> of a result<br>sodium hydroxide so<br>oic acid at <b>25°C</b> . |                           |                                         |               |
| marks)                          |                                                                                   |                           |                                         | `             |
| (Disso<br>moldm <sup>-3</sup> ) | ociation constant of o                                                            | ethanoic acid at <b>2</b> | $25^{\circ}\text{C} = 1.8 \text{ x } 1$ | L <b>0</b> -5 |
|                                 |                                                                                   |                           |                                         |               |
|                                 |                                                                                   |                           |                                         |               |

| tha | ryllium, magnesium, calcium and barium are some of the ele<br>at belong to Group (II) of the Periodic Table.<br>State how the elements reacts with sulphuric acid and give t<br>conditions for the reactions.<br>marks) |          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
|     |                                                                                                                                                                                                                         |          |
| b)  | (i). State how the solubilities of the sulphates of Group (II) each vary down the group.  (01 mark)                                                                                                                     | elements |
|     |                                                                                                                                                                                                                         |          |
|     | *****                                                                                                                                                                                                                   |          |
|     | (ii).Explain your answer in (b) (i). marks)                                                                                                                                                                             | (02      |

| •••••                       |
|-----------------------------|
|                             |
|                             |
| (01½                        |
|                             |
|                             |
| (01½                        |
|                             |
|                             |
|                             |
|                             |
| lly<br>gequation.           |
|                             |
| gequation.                  |
| equation. $\Delta H = 92.3$ |
| equation. $\Delta H = 92.3$ |
|                             |

| b)  | State what would happen to the position of the equilibrium i i. Pressure was increased.  mark)                                                                                                                                | f:<br>(01 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                                                                                                                                               |           |
|     | ii. Temperature was increased.<br>mark)                                                                                                                                                                                       | (01       |
|     |                                                                                                                                                                                                                               |           |
| c)  | When <b>3 moles</b> of hydrogen and <b>1 mole</b> of nitrogen were mixe allowed to attain equilibrium at <b>100 atms</b> and <b>400°C</b> , the equilibrium mixture contained <b>25%</b> of ammonia by volume. Calculate the: | d and     |
|     | i. Number of moles of nitrogen and hydrogen at equilibrium.                                                                                                                                                                   |           |
| (03 | 8 marks)                                                                                                                                                                                                                      |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     | ii. Value of the equilibrium constant, Kp at 400°C. (02 rks)                                                                                                                                                                  | 1/2       |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |
|     |                                                                                                                                                                                                                               |           |

| 17.(a).Di<br>mark | ifferentiate between addition and condens<br>s)               | ation polymers. (02                                             |
|-------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
|                   |                                                               |                                                                 |
|                   |                                                               |                                                                 |
|                   |                                                               |                                                                 |
|                   |                                                               |                                                                 |
|                   |                                                               |                                                                 |
|                   |                                                               |                                                                 |
| (b).Tl            | he structure formulae of two polymers <b>R</b> a $\mathbf{R}$ | nd <b>T</b> are shown below.<br><b>T</b>                        |
| Name<br>mark      | •                                                             | $ \begin{cases} CH_3 \\ CH_2 - C \\ COOCH_3 \end{cases} $ (@01) |
|                   | R:                                                            |                                                                 |

| and ' | Vrite the structural formula (e) of monomer(s).  T respectively. | of the polymers R<br>(03 |
|-------|------------------------------------------------------------------|--------------------------|
| marl  |                                                                  | (001                     |
| ` ,   | Give one use of:                                                 | (@01                     |
| mark) |                                                                  |                          |
| i.    | R:                                                               |                          |
|       |                                                                  |                          |
|       |                                                                  |                          |
|       |                                                                  |                          |
| ii.   | T:                                                               |                          |
|       |                                                                  |                          |
|       |                                                                  |                          |



## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 18.(a). | Define the following terms.        | (@01                         |  |  |  |
|---------|------------------------------------|------------------------------|--|--|--|
| mar     | rk)                                |                              |  |  |  |
| i.      | Bond energy.                       |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
| ii.     | Heat of formation.                 |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
| b)      | Given the following bond energies. |                              |  |  |  |
|         | Bond                               | Bond energy [KJ/mol]         |  |  |  |
|         | C-C                                | 337                          |  |  |  |
|         | С-Н                                | 414                          |  |  |  |
|         | C-O                                | 360                          |  |  |  |
|         | 0-Н                                | 123                          |  |  |  |
| L       | Calculate the heat of conversion   | on of gaseous methoxymethane |  |  |  |
|         | to gaseous ethanol.                | (02                          |  |  |  |
| 1       | marks)                             |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         |                                    |                              |  |  |  |
|         | *****                              |                              |  |  |  |

| 19.Complete each of the following organic reactions and give the IUPAC names for the major product (s).                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| a). PCl <sub>5</sub> (01 mark)                                                                                                                     |
| Name of product:                                                                                                                                   |
| b). Catalyst/Heat (01 mark)                                                                                                                        |
| Name of product (s):                                                                                                                               |
| c). (CH <sub>3</sub> COO) <sub>2</sub> Ca                                                                                                          |
| Name of product (s): (0½ mark)                                                                                                                     |
| d). HOCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH  Excess H <sup>+</sup> /Cr <sub>2</sub> O <sub>2</sub> <sup>2-</sup> Heat |
| Name of product (s):                                                                                                                               |
| (02 marks)                                                                                                                                         |

| ••••••    |                                                                    | ••    |
|-----------|--------------------------------------------------------------------|-------|
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
| b) Alkyne | e, Q react with ammoniacal silver nitrate solution.                |       |
| •         |                                                                    |       |
|           | ```                                                                |       |
| mar       | k)                                                                 |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    | ••    |
|           |                                                                    |       |
|           | ····                                                               |       |
|           |                                                                    |       |
| ii \M/ni  | te the equation for the reaction in b (i) above. $(01\frac{1}{2})$ |       |
|           | ·                                                                  |       |
| mar       | KS)                                                                |       |
|           |                                                                    | ••    |
|           |                                                                    |       |
|           |                                                                    |       |
| ••••••    |                                                                    | ••    |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
| c) Write  | equations to show how alkyne, Q can be synthesized                 |       |
| from et   | ·                                                                  |       |
|           |                                                                    |       |
| (04 mar   | 'KS)                                                               |       |
|           |                                                                    | •••   |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    | •••   |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    |       |
|           |                                                                    | • • • |
|           |                                                                    | • • • |

| be observed if each named reagent. | ch members of | the pair was tre | ated with th |
|------------------------------------|---------------|------------------|--------------|
| (@02 marks)                        |               | _                |              |
| a) CH3CH2OH                        | and           | C                | H₃OH         |
| Reagent                            |               |                  |              |
|                                    |               |                  |              |
|                                    |               |                  |              |
|                                    |               |                  |              |
| Observations                       |               |                  |              |
|                                    |               |                  |              |
|                                    |               |                  |              |
|                                    |               |                  |              |
| ь)нсоон                            | and           | СН₃СООН          |              |
| Reagent                            |               |                  |              |

|       | ·············                                                          |                  |
|-------|------------------------------------------------------------------------|------------------|
| 5.(a) | Explain briefly why chlorine is a stronger oxidizing a bromine. marks) | gent than<br>(02 |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
| d     | )Phosphorus.                                                           |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
| 6. (  | (a).Compare the reactivity of the following elements with v            | vater.           |
| (     | @0½ mark)                                                              |                  |
|       | i. Fluorine                                                            |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |
|       |                                                                        |                  |

|    | ii. Chlorine                                                                 |
|----|------------------------------------------------------------------------------|
|    |                                                                              |
|    |                                                                              |
|    |                                                                              |
|    | iii. Iodine                                                                  |
|    |                                                                              |
|    |                                                                              |
|    |                                                                              |
|    | (b). Write equation for the reaction between fluorine and: (@01½ $$          |
|    | marks)                                                                       |
|    | i. Cold dilute sodium hydroxide solution.                                    |
|    |                                                                              |
|    |                                                                              |
|    |                                                                              |
|    | ii. Hot concentrated sodium hydroxide solution.                              |
|    |                                                                              |
|    |                                                                              |
|    |                                                                              |
| 7. | (a).Define the term <b>Freezing point constant</b> of a substance. (01 mark) |
|    |                                                                              |
|    |                                                                              |
|    |                                                                              |

|    | (b).A solution containing <b>1.54g</b> of compound, T [Molar mass, Mr <sub>T</sub> = <b>128</b> ] in <b>18g</b> of camphor freezes at <b>148.3°C</b> .Calculate the <b>freezing point constant</b> of camphor. (03½ marks) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
| 8. | $50cm^3$ of a vapourized alcohol, Q [ $C_nH_{2n+1}OH$ diffused through a small hole in $119.85s$ .Under the same conditions, the same volume of hydrogen diffused via the hole in $21.85s$ .                               |
|    | c) (i). Calculate the molecular mass of alcohol, Q. (01½ marks)                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                            |

| <ul><li>ii. Determine the mole mark)</li></ul>                                                                                                            | cular formul        | a of alcoho        | l, Q.             | (01          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------------------|--------------|--|--|--|--|
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     | ••••••             |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
| d) (i).Write the <b>structura</b> l                                                                                                                       | f <b>ormulae</b> an | d <b>IUPAC n</b> a | <b>mes</b> of all | the possible |  |  |  |  |
| isomers of al                                                                                                                                             |                     |                    |                   | •            |  |  |  |  |
| (02 marks)                                                                                                                                                |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
| ii. Alcohol, Q reacts with aqueous sodium hydroxide solution and iodine solution to give a yellow precipitate. Identify alcohol, Q. $(0\frac{1}{2}$ mark) |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
|                                                                                                                                                           |                     |                    |                   |              |  |  |  |  |
| Below are some bond energies for selected bonds.                                                                                                          |                     |                    |                   |              |  |  |  |  |
| Bond                                                                                                                                                      | Н-Н                 | С-Н                | C=C               | C-C          |  |  |  |  |
| Bond energy (Kj/mol)                                                                                                                                      | 436                 | 412                | 615               | 348          |  |  |  |  |

a) Define the term **bond energy**. (01 mark)

9.

| b) | Use the values in the table to calculate the enthalpy change for the following reaction. (03 marks)                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    | SECTION B-54 MARKS<br>ATTEMPT <u>ALL</u> QUESTIONS IN THIS SECTION.                                                                                     |
| WO | ate what would be observed and write equations for reactions which ould occur when:  Dilute hydrochloric acid is added to sodium thiosulphate solution. |
|    | (02 marks) Observation:                                                                                                                                 |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    |                                                                                                                                                         |
|    | Equation:                                                                                                                                               |

| b) | Concentrated hydrochloric acid is added to manganese (IV) oxide and the mixture heated. (02\frac{1}{2}) marks) Observation:      |
|----|----------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    | Equation:                                                                                                                        |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
| c) | Mixture of potassium manganate (VII) and oxalic acid is heated in the presence of dilute sulphuric acid. (03 marks) Observation: |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    | Equation:                                                                                                                        |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
|    |                                                                                                                                  |
| d) | Water is added to tin (IV) chloride. (01½ marks) Observation:                                                                    |

| Equation:                              |               |                    |           |
|----------------------------------------|---------------|--------------------|-----------|
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
| 11.Write mechanism to sh               | ow how the fo | llowing conversion | is can be |
| effected.<br>(a). Butan-2-ol<br>marks) | to            | But-2-ene.         | (03       |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
| (b) Propene to marks)                  | propan-2-ol.  |                    | (03       |
|                                        |               |                    | •••••     |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |
|                                        |               |                    |           |

|    | (c) Ethene       | to           | 2-chloroethanol.             | (03   |
|----|------------------|--------------|------------------------------|-------|
|    | marks)           |              |                              |       |
|    |                  |              |                              |       |
|    |                  |              |                              |       |
|    |                  |              |                              |       |
|    |                  |              |                              |       |
|    |                  |              |                              |       |
| 12 | .(a).Draw the st | ructures and | name of shapes of the follow | ing   |
|    | molecules/ions   | 5.           |                              | (@01½ |
|    | markoj           |              |                              |       |

| Species                           | Structures | Name of shapes |
|-----------------------------------|------------|----------------|
| Species                           | Structures | Name of shapes |
| SiF <sub>4</sub>                  |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
| 110                               |            |                |
| NO <sub>3</sub> -                 |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
| SO 3                              |            |                |
| SO <sub>3</sub> 2-                |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
|                                   |            |                |
| (CH <sub>3</sub> ) <sub>3</sub> N |            |                |
| (0113)311                         |            |                |

|    | b) | drawn in (a) above.             | l<br>he following molecule/io   | on adopt the structure<br>(@01½ | _ |
|----|----|---------------------------------|---------------------------------|---------------------------------|---|
|    | d) | marks) $SO_3^{2-}$ .            |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    | e) | SiF <sub>4</sub> .              |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
| 13 |    | ).State what is meant l<br>ark) | by the term <b>melting poin</b> | t? (01                          |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |
|    |    |                                 |                                 |                                 |   |

(b). The table below shows the melting points of some of the period (III) elements of the periodic table.

| Elements | Na  | Mg  | Al  | Si    | P   | S   | Cl  |
|----------|-----|-----|-----|-------|-----|-----|-----|
| Mpt(°C)  | 371 | 923 | 933 | 1,680 | 317 | 392 | 172 |

| -    |       | 1      |
|------|-------|--------|
| Hyn  | laın  | why:   |
| DAD. | uaiii | vviiy. |

| i.   | The melting point of magnesium is higher than that of  | sodium. |
|------|--------------------------------------------------------|---------|
|      | (01½ marks)                                            |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
| ii.  | Silicon has a very high melting point. mark)           | (01     |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
|      |                                                        |         |
| iii. | Melting point of sulphur is higher than that of phosph |         |
|      | marks)                                                 | (01½    |
|      |                                                        |         |
|      |                                                        |         |

| f) W            | rite equa         | ation for the reaction                           | between:         |                            |
|-----------------|-------------------|--------------------------------------------------|------------------|----------------------------|
|                 |                   | magnesium and stear                              |                  | (01                        |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
| ii.             | Chlorin           | e and warm concentr                              | ated sodium hydi | coxide solution.           |
|                 | (01½ m            | arks)                                            |                  |                            |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
| iii.            | Sulphur<br>marks) | and hot concentrate                              | d nitric acid.   | (01½                       |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |
| Indica          | ate the co        | ns to show the follow<br>andition (s) for each i |                  | an be synthesized.<br>(@03 |
| mark:<br>d) Etl | •                 | from                                             | 1.2 dich         | lloroethane.               |
| u) Et           | nandi             | 11 0111                                          | 1,2-uicii        | nor octifalle.             |
|                 |                   |                                                  |                  |                            |
|                 |                   |                                                  |                  |                            |

|    |                |      |              | ••••• |
|----|----------------|------|--------------|-------|
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
| e) |                | from | iodomethane. |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                | •••• |              |       |
| f) | Ethylethanoate | from | bromoethane. |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |
|    |                |      |              |       |

|    | <b>100g</b> of carbon dioxide gas and <b>0.563g</b> of water.  Determine the empirical formula of organic compound, R.                                    | (03 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ej | marks)                                                                                                                                                    | (03 |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
| f) | When vapourized, <b>0.1g</b> of organic compound, R occupies a <b>54.5cm</b> <sup>3</sup> at a temperature of <b>208°C</b> and pressure of <b>98.3kPa</b> |     |
|    | (02½ marks)                                                                                                                                               |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |
|    |                                                                                                                                                           |     |

15.An organic compound, **R** contains carbon, hydrogen, and oxygen atoms

|                               | ompound, R reacts with sodium met<br>structural formula of all the possib                                        |                              |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
| chloride and in about 10 n    | ompound, R reacts with a mixture of<br>concentrated hydrochloric acid to g<br>ninutes.<br>a organic compound, R. | <del>-</del>                 |
| mark)                         |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
| ii. Show how<br>ene.<br>mark) | an organic compound, R can be syn                                                                                | nthesized from but-2-<br>(01 |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |
|                               |                                                                                                                  |                              |

| mark)                           | term Lattice energy?       | (01         |
|---------------------------------|----------------------------|-------------|
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
| b). Thermochemical data for s   | some processes are shown i | n the table |
| Process                         | Energy (kJ/mol)            |             |
| Atomization of calcium          | +178                       |             |
| First ionization energy         | +590                       |             |
| Second ionization energy        | +1,146                     |             |
| Formation of calcium fluoride   | -1,220                     |             |
| Electron affinity of fluorine   | -328                       |             |
| Bond dissociation energy of     | +243                       |             |
| fluorine                        |                            |             |
| i. Use the values above to      | construct a Born-Haber cy  | cle for the |
| formation of calcium flu        | ıoride.                    | (03         |
| Marks)                          |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
|                                 |                            |             |
| ii. Calculate the lattice energ | y of calcium fluoride      | (02         |
| marks)                          | y or carerain muoriue.     | (02         |
|                                 |                            |             |
|                                 |                            |             |

| iii | . Determine the enthalpy of solution of calcium fluoride.  [Enthalpies of hydration of calcium ions and fluoride ions as &-515kJ/mol]  marks) | re <sup>-</sup> 1,587<br>(01½ |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
| c)  | (i).State the effect of temperature on the solubility of calcium fluoride.                                                                    | m                             |
|     | (01 mark)                                                                                                                                     |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     |                                                                                                                                               |                               |
|     | (ii).Give a reason for your answer. mark)                                                                                                     | (0½                           |

| dio | the manufacture of sulphuric acid by the contact process, sulphur exide gas is catalytically oxidized to sulphur trioxide gas according to equation below. |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2S  | $O_{2(g)} + O_{2(g)} = 2SO_{3(g)} H = 197kJ/mol$                                                                                                           |
|     | e sulphur trioxide gas is then absorbed in a substance, T.  Name two major sources of sulphur dioxide gas in the contact process.  (01 mark)               |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
| b)  | State the industrial conditions used to obtain maximum yield of sulphur trioxide gas. (01½ marks)                                                          |
| •   |                                                                                                                                                            |
| •   |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
| c)  | Identify substance, T. (0½ mark)                                                                                                                           |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     |                                                                                                                                                            |
|     | (ii).Write equation to show what happens when sulphur trioxide gas is absorbed in substance, T. $$(01\frac{1}{2})$$ marks)                                 |

|    | •••• |                                                                                                                                                                                              |                |
|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    |      |                                                                                                                                                                                              |                |
|    | •••• |                                                                                                                                                                                              |                |
| d) | ca   | ate the conditions and write equation for the reaction be<br>rbon and sulphuric acid.<br>arks)                                                                                               | etween<br>(02½ |
|    | •••• |                                                                                                                                                                                              |                |
|    | •••• |                                                                                                                                                                                              |                |
|    | •••• |                                                                                                                                                                                              |                |
|    |      |                                                                                                                                                                                              |                |
| e) | di   | alphuric acid is used in the manufacture of calcium hydrogensulphate from calcium phosphate. Write equation for the reaction leading to the formation calcium dihydrogenphosphate. (01 mark) |                |
|    |      |                                                                                                                                                                                              | •••••          |
|    |      |                                                                                                                                                                                              |                |
|    |      |                                                                                                                                                                                              |                |
|    | ii.  | State two uses of dihydrogenphosphate. mark)                                                                                                                                                 | (01            |
|    |      |                                                                                                                                                                                              |                |
|    |      |                                                                                                                                                                                              |                |
|    |      |                                                                                                                                                                                              |                |

## THE PERIODIC TABLE

| 1                | 2                |                  |                  |                  |                  |                  |                 |                  |                 |                 |                 | 3                | 4                | 5                | 6               | 7                | 8                 |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|------------------|-------------------|
| 1.0<br>H<br>1    |                  |                  |                  |                  |                  |                  | -               |                  |                 |                 |                 |                  |                  |                  |                 | 1.0<br>H         | 4.0<br>H          |
| 6.9<br>Li<br>3   | 9.0<br>Be<br>4   | 1                |                  |                  |                  |                  |                 |                  |                 |                 |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6   | 14.0<br>N<br>7   | 16.0<br>O<br>8  | 19.0<br>F        | 20.2<br>No<br>10  |
|                  | 24.3<br>Mg<br>12 |                  |                  |                  |                  |                  |                 |                  |                 |                 |                 | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15  | 32.1<br>S<br>16 | 35.4<br>CI<br>17 |                   |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 | 45.0<br>Sc<br>21 | 47.9<br>Ti<br>22 | 50.9<br>V<br>23  | 52.0<br>Cr<br>24 | 54.9<br>Mn<br>25 |                 | 58.9<br>Co<br>27 |                 |                 |                 |                  |                  | 74.9<br>As<br>33 |                 | 79.9<br>Br<br>35 | 83.8<br>Kr<br>36  |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39  | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | 95.9<br>Mo<br>42 |                  | 101<br>Ru<br>44 | 103<br>Rh<br>45  | 106<br>Pd<br>46 | 108<br>Ag<br>47 | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51  | 128<br>Te<br>52 | 127<br>I<br>53   | 131<br>Xe<br>54   |
| Cs<br>55         | 137<br>Ba<br>56  | 139<br>La<br>57  | 178<br>Hf<br>72  | 181<br>Ta<br>73  | 184<br>W<br>74   | 186<br>Re<br>75  | 190<br>Os<br>76 | 192<br>Ir<br>77  | 195<br>Pt<br>78 | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82  | 209<br>Bi<br>83  | 209<br>Po<br>84 | 210<br>At<br>85  | 222<br>Rn<br>86   |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89  |                  | 2                | L I S            |                  | 4               | 9 55             | Section (Sec    |                 |                 | 7 (9)<br>7 (9)   |                  |                  |                 |                  | 2 3<br>28<br>3 13 |
| =                |                  | 6 (1             | 139<br>La<br>57  | 140<br>Ce<br>58  |                  | 144<br>Nd<br>60  |                 | 150<br>Sm<br>62  |                 |                 |                 |                  | 165<br>Ho<br>67  | 167<br>Er<br>68  |                 | 173<br>Yb<br>70  | 175<br>Lu<br>71   |
|                  |                  |                  | 227<br>Ac<br>89  | 232<br>Th<br>90  | 231<br>Pa<br>91  | 238<br>U<br>92   | 237<br>Np<br>93 |                  | 243<br>Am<br>95 |                 |                 |                  | Es               | Fm               | Md              | No               | 260<br>Lw<br>103  |



## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| 1. | (a)<br>i. | Complete the following equations. $^{236}_{92}U \longrightarrow ^{92}_{36}Kr + \dots + ^{141}_{56}Ba$                                                    | (01           |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    | ii.       | mark) $^{214}_{83}Bi \longrightarrow {}^{0}_{1}e \qquad \dots$                                                                                           | (01           |
|    |           | mark)                                                                                                                                                    |               |
|    | (b)       | The <b>half-life</b> of bismuth is <b>20 minutes</b> . Determine the <b>time t</b> form Bismuth to decay by <b>75%</b> . $(02\frac{1}{2} \text{ marks})$ | aken          |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
| 2. | (a)       | (i) Write the <b>electronic configuration</b> of phosphorous.                                                                                            | (01           |
|    | mar       | k)                                                                                                                                                       |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |
|    |           | (ii) State the <b>common oxidation states</b> exhibited by phosp in its compounds.  mark)                                                                | horous<br>(01 |
|    |           |                                                                                                                                                          |               |
|    | (b)       | Draw the <b>structure</b> and <b>name the shape</b> of phosphorous trichloride molecule. (01 mark)                                                       |               |
|    |           |                                                                                                                                                          |               |
|    |           |                                                                                                                                                          |               |

|    | (c)  | The enthalpy of formation of phosphorous trichloride is <b>306kJmol</b> <sup>-1</sup> and enthalpies of atomization of phosphorous and chlorine are <b>+314kJmol</b> <sup>-1</sup> and <b>+242kJmol</b> <sup>-1</sup> respectively.  Calculate the <b>average bond energy</b> of the P-Cl bond. (02½ marks) |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
| 3. |      | plete the following equations and in each case outline the accepted nanism for the reaction.                                                                                                                                                                                                                |
|    | a. ( | $CH_3)_2NH + CH_3-C-Br$ (03 marks)                                                                                                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    | b. ( | $\begin{array}{c c} CH_3 & HBr & (02\frac{1}{2} \text{ marks}) \end{array}$                                                                                                                                                                                                                                 |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |
|    |      |                                                                                                                                                                                                                                                                                                             |

| 4. | tube h<br>samp<br>tube v | neld horizontally. At the cole of hydrochloric acid an was left for some time, a v | placed at one <b>end A</b> of a <b>0.8met</b><br>other <b>end B</b> of the tube was place<br>and both ends of the tube closed. We<br>white ring was formed inside the<br>eaction leading to the formation | ed a<br>When the<br>e tube. |
|----|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    | b)                       | Calculate the <b>distance be</b> marks)                                            | etween end B and the white ring                                                                                                                                                                           | g. (03                      |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
| 5. |                          | 9                                                                                  | used to distinguish between eac                                                                                                                                                                           |                             |
|    |                          | ~ -                                                                                | ach case, state what would be o<br>ated with the reagent you have r                                                                                                                                       |                             |
|    | a. C                     | rl- <sub>(aq)</sub> and I- <sub>(a</sub><br>arks)                                  |                                                                                                                                                                                                           | (03                         |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |
|    |                          |                                                                                    |                                                                                                                                                                                                           |                             |

|    | b.  | SO <sub>3</sub> <sup>2-</sup> (aq)<br>marks) | and       | $S_2O_3^{2-}(aq)$      | (02½                                 |
|----|-----|----------------------------------------------|-----------|------------------------|--------------------------------------|
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
| 6. |     |                                              | condition | s for the formation o  | f polyvinyl chloride. (01            |
|    | ma  | ırk)                                         |           |                        | 7                                    |
|    |     |                                              | _         |                        | <del>J</del> n                       |
|    | (b` | The osmot                                    | ic pressu | re of a solution conta | nining <b>4.00g/dm³</b> of           |
|    |     | lyvinyl                                      | _         |                        | t <b>20°C</b> . Calculate the number |
|    |     |                                              | in polyvi | nyl chloride.          |                                      |
|    | (0: | 3 marks)                                     |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     | State <b>one</b><br>ark)                     | use of po | olyvinyl chloride      | $(0\frac{1}{2})$                     |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
|    |     |                                              |           |                        |                                      |
| 7. | (a) |                                              |           |                        | rite equation for the reaction       |
|    | i   |                                              | ould take | •                      | to acidified solution of             |
|    | 1   |                                              | -         | anate (VII).           | (02                                  |
|    |     | Observa                                      | ation:    |                        |                                      |

|              | Equation:                                                                                             |                     |
|--------------|-------------------------------------------------------------------------------------------------------|---------------------|
|              |                                                                                                       | •••••               |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              | 3-phenylpropene was added to a solution of bromine in<br>tetrachoromethane.<br>marks)<br>Observation: | n<br>(01½           |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              | Equation:                                                                                             |                     |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
| (b)<br>mark) | Give a <b>reason</b> for your observation in a (i) above.                                             | (01                 |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              |                                                                                                       |                     |
|              | hyl ammonium chloride undergoes hydrolysis in water<br>following equation:                            | according           |
|              | $(CH_3)_2NH^+_{(aq)} + H_2O_{(l)}$ $(CH_3)_2NH_{(aq)} + H_3O_{(l)}$                                   | ) <sup>+</sup> (aq) |
| -            | Write the <b>expression for the hydrolysis constant, <math>K_h</math></b> of ammonium chloride. mark) | dimethyl<br>(01     |

8.

|    | •••                            | ··········                                                                                                                                                                                                                               |
|----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | h <u>;</u><br><b>0</b> ;<br>i. | Then <b>4.0mol/dm³</b> of dimethyl ammonium chloride was ydrolysed <b>25.0cm³</b> of the resulting solution required <b>7.5cm³</b> of <b>.01mol/dm³</b> of sodium hydroxide for complete neutralization.  pH of the solution. (02 marks) |
|    |                                | ·                                                                                                                                                                                                                                        |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    | •                              |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    | ii.                            | hydrolysis constant $K_h$ and any assumptions made.                                                                                                                                                                                      |
|    | ((                             | 02½ marks)                                                                                                                                                                                                                               |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    |                                |                                                                                                                                                                                                                                          |
|    | •••                            |                                                                                                                                                                                                                                          |
|    | •••                            |                                                                                                                                                                                                                                          |
|    | •••                            |                                                                                                                                                                                                                                          |
| ^  | TAT 1.                         |                                                                                                                                                                                                                                          |
| 9. |                                | quation for the reaction (s) between: ead (IV) oxide and concentrated hydrochloric acid on warming.                                                                                                                                      |
|    | ((                             | 01½ marks)                                                                                                                                                                                                                               |
|    | •••                            |                                                                                                                                                                                                                                          |
|    | •••                            |                                                                                                                                                                                                                                          |
|    | •••                            |                                                                                                                                                                                                                                          |

| b)       | Aqueous lead (II) nitrate and excess sodium hydroxide solution.                                  |                   |  |
|----------|--------------------------------------------------------------------------------------------------|-------------------|--|
|          | (03 marks)                                                                                       |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
| c)       | Tin (II) chloride and water. marks)                                                              | (01½              |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
|          | SECTION B-56 MARKS                                                                               | CTION             |  |
| 10 Rervl | ATTEMPT <u>ALL</u> QUESTIONS IN THIS SE lium is in Group (II) of the periodic Table but it shows |                   |  |
| •        | writies with <b>aluminium</b> which is in group ( <b>III</b> ) of the Pe                         |                   |  |
|          | Give a reason why aluminium shows some similarities                                              |                   |  |
|          | properties with beryllium.                                                                       |                   |  |
|          | (01 mark)                                                                                        |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
| b)       | Write equation for the reaction between water and:                                               |                   |  |
|          | i. Beryllium carbide.                                                                            | $(01\frac{1}{2})$ |  |
|          | marks)                                                                                           |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
| i        | i. Calcium carbide.                                                                              | (01½              |  |
|          | marks)                                                                                           |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |
|          |                                                                                                  |                   |  |

| (01 mark)                                     |                                  |                                        |  |
|-----------------------------------------------|----------------------------------|----------------------------------------|--|
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |
| d) Write equation for the i.Aluminium.        | e reaction between s             | odium hydroxide an<br>(02 marks)       |  |
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |
| ii.Beryllium.                                 |                                  | (02 marks)                             |  |
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |
| 03 marks) Substance added to H <sub>2</sub> O | Effect on                        |                                        |  |
| V                                             | apour pressure of H <sub>2</sub> | O Total vapour<br>Pressure of the syst |  |
| Sodium chloride                               |                                  |                                        |  |
| Propanone                                     |                                  |                                        |  |
| Tetrachloromethane                            |                                  |                                        |  |
| b). Explain your answer(s                     | s) in (a) (ii) and (a)           | (iii). (04                             |  |
| nárks)                                        |                                  |                                        |  |
|                                               |                                  |                                        |  |
|                                               |                                  |                                        |  |

| (c). An organic compound X was steam distilled at 95°C at 760mmHg pressure. If the distillate contained 0.8g of water by mass.  Calculate the relative molecular mass of X.  (02 marks)  (The saturated vapour pressure of water at 95°C is 732.7mmHg)                                 | <ul> <li>(c). An organic compound X was steam distilled at 95°C at 760mmF pressure. If the distillate contained 0.8g of water by mass.</li> <li>Calculate the relative molecular mass of X.</li> <li>(02 marks)</li> </ul> |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| pressure. If the distillate contained <b>0.8g</b> of water by mass.  Calculate the relative molecular mass of <b>X</b> .  (02 marks)  (The saturated vapour pressure of water at <b>95°C</b> is <b>732.7mmHg</b> )                                                                     | pressure. If the distillate contained <b>0.8g</b> of water by mass. Calculate the relative molecular mass of <b>X</b> . (02 marks)                                                                                         |                |
| (02 marks) (The saturated vapour pressure of water at 95°C is 732.7mmHg)                                                                                                                                                                                                               | (02 marks)                                                                                                                                                                                                                 | ;)<br>         |
| 12.Name one reagent that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  (a) and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                      | <b>;</b> )     |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     | (The Saturated Vapour pressure of Water at 75 C is 752.7 initial                                                                                                                                                           | 5 <i>)</i><br> |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            | ••••           |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  (a) and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks) |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            | • • •          |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| 12.Name <b>one reagent</b> that can be used to distinguish between each of the following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).  and CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl (03 marks)     |                                                                                                                                                                                                                            |                |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     |                                                                                                                                                                                                                            |                |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     |                                                                                                                                                                                                                            | • • •          |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     |                                                                                                                                                                                                                            |                |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     |                                                                                                                                                                                                                            |                |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     |                                                                                                                                                                                                                            |                |
| following pairs of compounds. In each case, state what is observer if each member of the pair is treated with the reagent?  (a).   and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                     | •••••                                                                                                                                                                                                                      |                |
| each member of the pair is treated with the reagent? (a). and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                                                                                              |                                                                                                                                                                                                                            | !              |
| (a). Cl and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                        | each member of the pair is treated with the reagent?                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                |
| Reagent:                                                                                                                                                                                                                                                                               | (a). $\langle \rangle$ and $CH_3CH_2CH_2Cl$ (03 marks)                                                                                                                                                                     |                |
| Neagent.                                                                                                                                                                                                                                                                               | Poagont                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                        | Reagent.                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            | ••             |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                |
| Observation:                                                                                                                                                                                                                                                                           | Observation:                                                                                                                                                                                                               |                |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            | ••             |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            | ••             |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                |

| (b). CH <sub>2</sub> OH and CH <sub>2</sub> OH (03 marks) Reagent:                                                                                     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                        |              |
| Observation:                                                                                                                                           |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
| (c). CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> and CH <sub>3</sub> CH <sub>2</sub> COCH <sub>2</sub> CH <sub>3</sub> (Reagent: | (03 marks)   |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
| Observation:                                                                                                                                           |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
| 3. Write equations to show how the following compounds can synthesized. Indicate the condition (s) for the reaction(s).  a) But-2-yne from butan-2-ol. | n be<br>(03½ |
| marks)                                                                                                                                                 | (0372        |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |
| b)Ethylamine from ethanol.<br>marks)                                                                                                                   | (03½         |
|                                                                                                                                                        |              |
|                                                                                                                                                        |              |

| -  | Propanone from propene.<br>marks)                                                                                                      | (02        |
|----|----------------------------------------------------------------------------------------------------------------------------------------|------------|
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    | trogen reacts with hydrogen gas to form ammonia according equation: $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)} \qquad H = -92k.$ | _          |
| a) | State the conditions for the reaction which would give may yield of ammonia.  (01½ marks)                                              |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
| b) | Write equations for the reactions that take place during the manufacture of nitric acid from ammonia.  marks)                          | ne<br>(04½ |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
|    |                                                                                                                                        |            |
| c) | Write equations for the reaction between copper and: i. Dilute nitric acid. marks)                                                     | (01½       |

| ii.          | Concentrated nitric acid. marks)                                                                                                                                                                                                                                                                                    | (01½                |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
| -            | ogen and iodine react to form hydrogen iodide according ving equation. $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$                                                                                                                                                                                                            | g to the            |
| a) (i)       | Write the expression for the <b>equilibrium constant, Kc</b> fo                                                                                                                                                                                                                                                     | r the               |
| a) (1)       | reaction.                                                                                                                                                                                                                                                                                                           | (01                 |
| ma           | rk)                                                                                                                                                                                                                                                                                                                 |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
| (ii <u>)</u> | ) <b>1 mole</b> of hydrogen and $\frac{1}{3}$ mole of iodine were heated to <b>450°C</b> until equilibrium was obtained. Calculate the nur moles of hydrogen iodide present in the equilibrium mi <b>450°C</b> . (The equilibrium constant, <b>Kc</b> for the reaction be hydrogen and iodine is <b>50</b> ) marks) | nber of<br>xture at |
| ••••         |                                                                                                                                                                                                                                                                                                                     |                     |
| ••••         |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |
|              |                                                                                                                                                                                                                                                                                                                     |                     |

|        |                                                                                      | ••••••                 |
|--------|--------------------------------------------------------------------------------------|------------------------|
|        |                                                                                      |                        |
|        |                                                                                      |                        |
| b)     | Briefly describe how the concentration of iodine in the edmixture can be determined. | quilibrium<br>(04      |
|        | marks)                                                                               |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
| •••••• |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
| 16 A   | compound R contains 40% carbon and 6.67% hydrogen, t                                 | he rest                |
|        | eing oxygen.                                                                         | 110 1 050              |
|        | Calculate the <b>empirical formula</b> of <b>R</b> . marks)                          | (01½                   |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      | ••••••                 |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
|        |                                                                                      |                        |
| b)     | ) A solution containing <b>28.145g</b> of <b>R</b> in <b>250g</b> of water froze     | e at <b>-3.490°C</b> . |
| -)     | i. Determine the <b>molecular formula</b> of <b>R</b> .                              |                        |

| •••  | marks)                                                                                          | (03       |
|------|-------------------------------------------------------------------------------------------------|-----------|
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 | •••••     |
| •••  |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
| •••  |                                                                                                 |           |
|      |                                                                                                 |           |
| ii.  | Write the structural formula and <b>I.U.P.A.C</b> names of all topossible isomers of <b>R</b> . | the       |
|      | (02 marks)                                                                                      |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 | ••••••    |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
| c) R | reacted with <b>sodium carbonate</b> with <b>effervescence</b> .                                |           |
| i.   |                                                                                                 | (01       |
|      | mark)                                                                                           |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |
| ii.  | Write equations to show how <b>R</b> can be <b>synthesized</b> from                             | n ethene. |
|      | (01½ marks)                                                                                     |           |
|      |                                                                                                 |           |
|      |                                                                                                 |           |

| 17.The d                  | diagram below shows part of the atomic emission spe<br>ogen.                                                                        | ctrum of |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| .8Å                       | .3Å<br>.5Å                                                                                                                          |          |
| 6562.8Å                   | 4861.3Å<br>4340.5Å<br>4101.7Å                                                                                                       |          |
|                           |                                                                                                                                     |          |
|                           | Energy —>                                                                                                                           |          |
| a) Sta <sup>.</sup><br>i. | te: The information that can be obtained from the separabout the electronic structure of the hydrogen atom $(01\frac{1}{2})$ marks) |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
| ii.                       | How an emission line arises.<br>marks)                                                                                              | (01½     |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |
|                           |                                                                                                                                     |          |

| b)Briefly, explain why the emission lines get closer together. (03 $\frac{1}{2}$ marks) |
|-----------------------------------------------------------------------------------------|
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| c) State what is meant by term 'principal quantum number'. $(01\frac{1}{2}$ marks)      |
|                                                                                         |
|                                                                                         |
|                                                                                         |
| ♥ ===END===                                                                             |

## SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

| The standard electrode potentials for some half-                                                                           | -cell reactions   |
|----------------------------------------------------------------------------------------------------------------------------|-------------------|
| are given below:                                                                                                           |                   |
| $2H_2O_{(l)}$ $\longrightarrow$ $H_2O_{2(aq)} + 2H^+_{(aq)} + 2e^ \stackrel{}{E} = 1.77V$<br>$2I^{(aq)} + 2e^ E^- = 0.54V$ |                   |
| c) Write the:                                                                                                              |                   |
| (i) Cell notation for the reaction that takes pla                                                                          | ace when the      |
| two half cells are connected.<br>marks)                                                                                    | $(01\frac{1}{2})$ |
|                                                                                                                            |                   |
| ·····                                                                                                                      |                   |
| (ii) Equation for overall reaction.                                                                                        | $(01\frac{1}{2})$ |
| marks)                                                                                                                     |                   |
|                                                                                                                            |                   |
| <b></b>                                                                                                                    |                   |
| d)(i) Calculate the $E^{\theta}$ for the cell in (a) above. mark)                                                          | (01               |
|                                                                                                                            |                   |
|                                                                                                                            |                   |
|                                                                                                                            | •                 |
| (ii) Comment on the feasibility of the reaction.  mark)                                                                    | (01               |

| <br><br>5 Comp | ound,E has a molecular structure of:                                                                                                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B <del>r</del> | CH <sub>2</sub> Br                                                                                                                                                                                           |
| a)Nai<br>mai   | me the functional group present in compound, E. $(0\frac{1}{2})$                                                                                                                                             |
| E              | rite the mechanism for the reaction between compound, and hot aqueous sodium hydroxide solution. (01 $\frac{1}{2}$ arks)                                                                                     |
|                |                                                                                                                                                                                                              |
| ••••           |                                                                                                                                                                                                              |
| ••••           |                                                                                                                                                                                                              |
| (ii            | ) Name the type of reaction mechanism in b(i) above.                                                                                                                                                         |
| ****           | (01 mark)                                                                                                                                                                                                    |
| a<br>0<br>0    | 2.5g of compound, E was heated with 25.0cm <sup>3</sup> of 1M aqueous sodium hydroxide solution. Calculate the volume of 0.25M sulphuric acid needed to neutralize the mixture after the reaction. 03 marks) |
| ••••           |                                                                                                                                                                                                              |
|                |                                                                                                                                                                                                              |

|    | ••••••             |                                          |                   |
|----|--------------------|------------------------------------------|-------------------|
|    |                    |                                          |                   |
|    |                    |                                          |                   |
|    |                    |                                          |                   |
|    |                    |                                          |                   |
|    | ••••••             |                                          |                   |
|    |                    |                                          |                   |
| ļ  | N                  |                                          | . Alsa Ballandina |
| 6. | Draw the<br>molecu | structure and name the shape of<br>ules. | the following (04 |
|    | marks)             |                                          | (0.1              |
|    | Ions/Anions        | Structure                                | Name of shape     |
|    | SO <sub>2</sub>    |                                          |                   |
|    | SO₃                |                                          |                   |
|    | SOCI <sub>2</sub>  |                                          |                   |

|     | SO. CL                          |                             |                      |
|-----|---------------------------------|-----------------------------|----------------------|
|     | 5O <sub>2</sub> Cl <sub>2</sub> |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
| b)  | Write equa                      | tion to show the reaction b | <br>etween:          |
| -   | •                               | and acidified potassium dic |                      |
|     | 404                             |                             |                      |
|     | (01 mark                        | )                           |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
| (   | (ii) SOCl₂ an                   | d propanoic acid.           | (01                  |
|     | mark)                           |                             |                      |
|     |                                 |                             |                      |
|     | •••••                           |                             |                      |
|     |                                 |                             |                      |
| 7.  | Write equ                       | ation for the reaction betw | een hot concentrated |
|     | sodium hy                       | droxide solution and:       | (@01                 |
|     | mark)                           |                             |                      |
| (i) | ) Aluminium                     |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
|     |                                 |                             |                      |
| (ii | i) Phosphoro                    | IS.                         |                      |
|     |                                 |                             |                      |
| (ii | i) Phosphoro                    | ıs.                         |                      |

|   | o)Write equation for the reaction between dilute sulphuric acid and:  (@01 mark)  (i) Copper (I) oxide.                          |
|---|----------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                  |
|   |                                                                                                                                  |
|   | ••••••                                                                                                                           |
| ( | (ii) Sodium benzoate solution.                                                                                                   |
|   |                                                                                                                                  |
|   |                                                                                                                                  |
|   |                                                                                                                                  |
|   | Potassium ethanoate undergoes hydrolysis when dissolved in water according to the equation below.                                |
|   | If the hydrolysis constant, $K_h$ for potassium ethanoate at room temperature is 5.6 $\times$ 10 <sup>-10</sup> . Calculate the: |
|   | a)pH of 0.1M solution of potassium ethanoate. (03                                                                                |
| ( |                                                                                                                                  |

| ··············                                                                                                      |              |
|---------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     | •••••••••••• |
|                                                                                                                     |              |
| Demonstrate budgelygic of 0 1M colution of                                                                          | natagium     |
| )Percentage hydrolysis of 0.1M solution of                                                                          |              |
| ethanoate.                                                                                                          | (02          |
| marks)                                                                                                              |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     | •            |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
|                                                                                                                     |              |
| <b></b>                                                                                                             |              |
| <br>Carbon monoxide aas diffuses 2 646 times f                                                                      | aster than   |
| Carbon monoxide gas diffuses 2.646 times formula Fe(CO):                                                            | aster than   |
| arbonyl of iron with the formula $Fe(CO)_n$ :                                                                       | aster than   |
| arbonyl of iron with the formula $Fe(CO)_n$ :  ) Determine the:                                                     |              |
| arbonyl of iron with the formula $Fe(CO)_n$ :                                                                       | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl |              |
| arbonyl of iron with the formula $Fe(CO)_n$ :  ) Determine the:                                                     | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |
| arbonyl of iron with the formula Fe(CO) <sub>n</sub> :  ) Determine the:  (i) Relative formula mass of the carbonyl | of iron.     |

|       | (ii) Value of n.<br>marks)                                                                                                         | (01½                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|       |                                                                                                                                    |                      |
|       |                                                                                                                                    | •••••                |
|       |                                                                                                                                    |                      |
|       | Write the name of carbonyl of iron and state oxidation state of iron. (01 mark) Name:                                              |                      |
|       | Oxidation state:                                                                                                                   |                      |
| 7.(a) | A crystalline solid, R dissolved in water to g solution. Addition of potassium hexacyanofes solution produced a brown precipitate. |                      |
| (i)   | Identify the cation in R. mark)                                                                                                    | (0½                  |
| (ii)  | Write the equation leading to the formation precipitate. marks)                                                                    | of the brown<br>(01½ |
|       |                                                                                                                                    |                      |

| (i) Excess concentrated hydrochloric acid. marks)                                                                                              | (01½            |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| ······································                                                                                                         |                 |
| (ii) Potassium iodide solution.<br>marks)                                                                                                      | (01½            |
|                                                                                                                                                |                 |
| Polymer, Z has the following structure:                                                                                                        |                 |
| CH <sub>2</sub> CHCH <sub>2</sub> CH <sub>2</sub> CN CN                                                                                        |                 |
| a)Write the structure and name of the monon Z.                                                                                                 | ner of polymer, |
|                                                                                                                                                | ••••••          |
|                                                                                                                                                |                 |
| b)The osmotic pressure of a solution containin<br>polymer, Z is 0.155mmHg at room temperat<br>the number of monomers in a polymer,Z.<br>marks) |                 |
|                                                                                                                                                |                 |
|                                                                                                                                                | ••••••          |
|                                                                                                                                                |                 |

|    |    | <b></b>                                                                                                                |
|----|----|------------------------------------------------------------------------------------------------------------------------|
| 9. |    | rite equation(s) to show how the following conversions can                                                             |
|    |    | e effected.  Propane-1,2-diol from propan-1-ol. $(02\frac{1}{2})$                                                      |
|    | uj | marks)                                                                                                                 |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    | ······································                                                                                 |
|    |    | ${f O}_{\parallel}$                                                                                                    |
|    |    | CHCOCH3 CHCH3                                                                                                          |
|    |    | b) $\left[\begin{array}{ccc} \\ \\ \end{array}\right]$ $CH_3$ from $\left[\begin{array}{ccc} \\ \\ \end{array}\right]$ |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |
|    |    |                                                                                                                        |

|        | •••••••••••                                   |                  |
|--------|-----------------------------------------------|------------------|
|        |                                               | •••••••••••      |
|        |                                               | ••••••           |
|        | ············                                  |                  |
|        | SECTION B-54 MARKS                            |                  |
|        | ATTEMPT ANY SIX QUESTIONS IN THI              | S SECTION.       |
| 10.(a) | ) Write:                                      |                  |
|        | (i) The name and formula of one ore from wl   | nich zinc can    |
|        | be extracted.                                 | (01              |
|        | mark)                                         |                  |
|        |                                               |                  |
|        |                                               |                  |
|        |                                               |                  |
|        |                                               |                  |
|        |                                               |                  |
|        | (ii) Name the method by which the ore can b   | e                |
|        | concentrated.                                 |                  |
|        | (01 mark)                                     |                  |
|        |                                               |                  |
|        |                                               | •••••••••••      |
|        |                                               |                  |
| b)     | During the concentration process, the ore is  | crushed and      |
|        | mixed with water, oil and compressed air is b | oubbled          |
|        | through the mixture. The ore rises up the fr  | oth and it's     |
|        | skimmed off and the acid is added. State th   | e role of:       |
|        | (i) Oil.                                      | $(01\frac{1}{2}$ |
|        | marks)                                        |                  |
|        |                                               |                  |
|        |                                               |                  |

| pressed air. (01-<br>ks)                                                                                                           | 1 2   |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                    |       |
|                                                                                                                                    | ••••• |
| i. (0                                                                                                                              | 01    |
| k)                                                                                                                                 |       |
|                                                                                                                                    | ••••• |
| ncentrated ore in (b) above can be converted                                                                                       | l to  |
| ncentrated ore in (b) above can be converted<br>ide:<br>te how the conversion can be carried out. (<br>k)                          |       |
| ide:<br>te how the conversion can be carried out. (                                                                                |       |
| ide:<br>te how the conversion can be carried out. (<br>k)                                                                          | (01   |
| ide:  te how the conversion can be carried out. ( k)  te the equation for the reaction that leads to the conversion of zinc oxide. | (01   |
| ide:  te how the conversion can be carried out. ( k)   te the equation for the reaction that leads t                               | (O1   |
| ide:  te how the conversion can be carried out. ( k)  te the equation for the reaction that leads to the conversion of zinc oxide. | (O1   |
| ide:  te how the conversion can be carried out. ( k)  te the equation for the reaction that leads t nation of zinc oxide. ( k)     | (C    |

| converted to zinc.                                                                                            |
|---------------------------------------------------------------------------------------------------------------|
| (01 mark)                                                                                                     |
|                                                                                                               |
|                                                                                                               |
| •••••                                                                                                         |
| 11. State what would be observed and write equation for the                                                   |
| reaction that would take place when:                                                                          |
| <ul> <li>a) Hydrogen sulphide gas is bubbled through acidified potassium dichromate (VI) solution.</li> </ul> |
| (02½ marks)                                                                                                   |
| Observation (s):                                                                                              |
|                                                                                                               |
|                                                                                                               |
| ······································                                                                        |
| Equation:                                                                                                     |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
| ······································                                                                        |
| b) Iodine solution and sodium hydroxide solution is added to                                                  |
| butanone and the mixture warmed. (02                                                                          |
| marks)                                                                                                        |
| Observation (s):                                                                                              |
|                                                                                                               |
|                                                                                                               |
| ······································                                                                        |
| Equation:                                                                                                     |

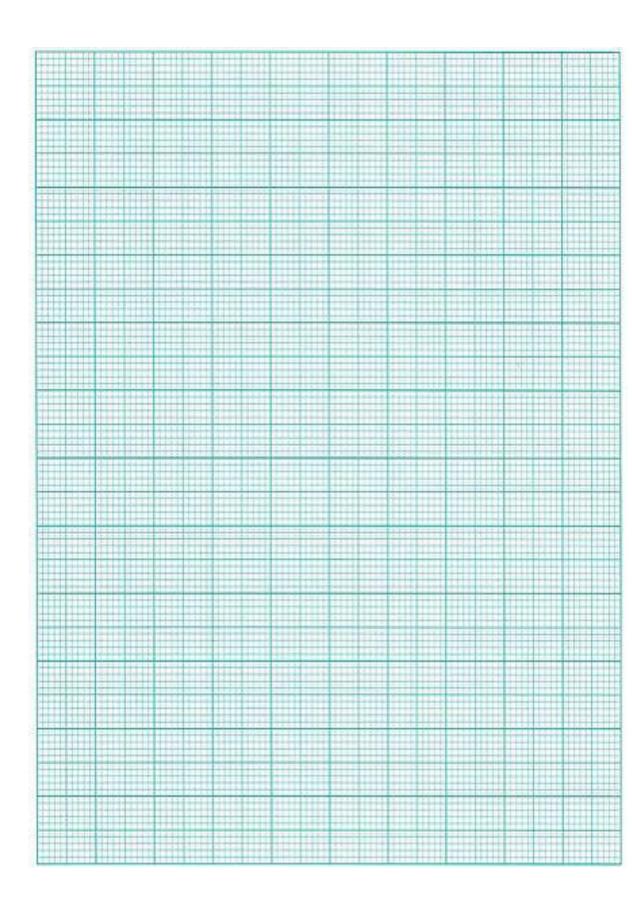
|                                          | followed by lead (IV) oxide is sulphate solution and the mixture |
|------------------------------------------|------------------------------------------------------------------|
| (02 marks)                               |                                                                  |
| Observation (s):                         |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
| Equation:                                |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
| ······································   |                                                                  |
| d)Dilute hydrochloric acid is            | s added to sodium thiosulphate                                   |
| solution.                                | (02½                                                             |
| marks)                                   |                                                                  |
| Observation (s):                         |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
| ••••••                                   |                                                                  |
| Equation:                                |                                                                  |
|                                          |                                                                  |
|                                          |                                                                  |
| <b></b>                                  |                                                                  |
| المادانية والمادانية المادانية المادانية | acomposas at high temperatura                                    |

12. Sulphur dichloride dioxide decomposes at high temperature according the equation below:

| $SO_2Cl_{2(g)}$ $SO_{2(g)} + Cl_{2(g)}$                                                                    |                      |
|------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                            | ad in a 2            |
| When 13.5g of Sulphur dichloride dioxide was place                                                         |                      |
| litres vessel and heated at a pressure of 2 atmosp                                                         | heres,               |
| 1.5g of chlorine was formed at equilibrium.                                                                |                      |
| a) Write the expression for the equilibrium constar                                                        | nt, K <sub>p</sub> . |
|                                                                                                            | (01                  |
| mark)                                                                                                      |                      |
|                                                                                                            |                      |
|                                                                                                            |                      |
|                                                                                                            |                      |
|                                                                                                            |                      |
|                                                                                                            | •••••                |
|                                                                                                            |                      |
|                                                                                                            | or the               |
| b) Calculate the value of equilibrium constant, $K_{\text{p}}$ for                                         |                      |
| b) Calculate the value of equilibrium constant, $K_p$ for reaction and state its S.I unit.                 | or the<br>(05        |
| b) Calculate the value of equilibrium constant, $K_{\text{p}}$ for                                         |                      |
| b) Calculate the value of equilibrium constant, $K_p$ for reaction and state its S.I unit.                 | (05                  |
| b) Calculate the value of equilibrium constant, $K_p$ for reaction and state its S.I unit. marks)          | (05                  |
| b) Calculate the value of equilibrium constant, $K_p$ for reaction and state its S.I unit. marks)          | (05                  |
| b)Calculate the value of equilibrium constant, K <sub>p</sub> for reaction and state its S.I unit.  marks) | (05                  |
| b) Calculate the value of equilibrium constant, $K_p$ for reaction and state its S.I unit. marks)          | (05                  |
| b)Calculate the value of equilibrium constant, K <sub>p</sub> for reaction and state its S.I unit.  marks) | (05                  |
| b)Calculate the value of equilibrium constant, K <sub>p</sub> for reaction and state its S.I unit.  marks) | (05                  |
| b)Calculate the value of equilibrium constant, K <sub>p</sub> for reaction and state its S.I unit.  marks) | (05                  |

| c)State what would happen to the posit<br>when: | tion of equilibrium             |
|-------------------------------------------------|---------------------------------|
| (@0½ mark)                                      |                                 |
| (i) Pressure of the system is reduced           | <b>1</b> .                      |
|                                                 |                                 |
|                                                 |                                 |
| ,                                               |                                 |
|                                                 |                                 |
| (ii) Sulphur dioxide gas is removed fro         | om the equilibrium              |
| mixture.                                        | ·                               |
|                                                 |                                 |
|                                                 |                                 |
| ,                                               |                                 |
| <del></del>                                     |                                 |
| (iii)Chlorine gas is added to the equili        | brium mixture.                  |
|                                                 |                                 |
|                                                 |                                 |
| ,                                               |                                 |
|                                                 |                                 |
| d)Explain your answer in c (iii) above.         | (01 <del>1</del> / <sub>2</sub> |
| marks)                                          | (0-2                            |
|                                                 |                                 |
|                                                 |                                 |
| ,                                               |                                 |
|                                                 |                                 |
|                                                 |                                 |
|                                                 |                                 |
| 13. Complete the following equations and wr     | rite the mechanism for          |
| the reaction in each case: $Conc.H_2SO_4$       |                                 |
| a) $CH_3CH_2OH \xrightarrow{CORC.H_2SO_4}$      | (03½ marks)                     |
| 1700                                            |                                 |
|                                                 |                                 |
|                                                 |                                 |

| b) CH <sub>3</sub> CH(Cl)CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> OH/Heat  CH <sub>3</sub> CH <sub>2</sub> OH/Heat  (03½ marks) |          |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
|                                                                                                                                        |          |
| SO <sub>3</sub> H                                                                                                                      |          |
| Conc.H <sub>2</sub> SO <sub>4</sub> Conc.HNO <sub>3</sub> /Heat                                                                        | 03 marks |


| a) | ad (II) chloride is sparingly soluble in water:  Write the:  i) Equation for the solubility of lead (II) chloride in  water. |
|----|------------------------------------------------------------------------------------------------------------------------------|
| a) | Write the:  i) Equation for the solubility of lead (II) chloride in                                                          |
| a) | Write the:  i) Equation for the solubility of lead (II) chloride in water.  (01½ marks)                                      |

| (03½ ma                                 | rks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                  |                                    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|------------------------------------|
| ••••••                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••••••                   |                                                  |                                    |
| •••••                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                  | •••••                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                  |                                    |
| *************************************** | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                  |                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                  |                                    |
|                                         | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••••                    | •••••••••••••••••••••••••••••••••••••••          | •••••••                            |
| ••••••                                  | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ••••••                   | ••••••                                           | ••••••                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | •••••                                            | •••••                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                  |                                    |
| ••••••                                  | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •••••                    | ••••••                                           | ••••••                             |
|                                         | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                        |                                                  |                                    |
| (b) abov                                | e, Calculate t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the percen               | is used insted<br>tage of lead (<br>sumption mad | (II) chlori                        |
| (b) abov                                | e, Calculate t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the percen               | tage of lead (                                   | (II) chlori                        |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (                                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) abov                                | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) above that dis                      | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percen<br>ate the as | tage of lead (<br>sumption mad                   | (II) chlori<br>e.                  |
| (b) above that dis                      | e, Calculate to solved and st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the percent              | tage of lead (<br>sumption mad                   | (II) chlori                        |
| (b) above that dis                      | e, Calculate to solved and street | ate the as               | tage of lead (                                   | (II) chlori<br>e.<br>              |
| (b) above that dis                      | e, Calculate to solved and street | ate the as               | tage of lead (sumption mad                       | (II) chlori<br>e.<br><br>xcess air |
| (b) above that dis                      | e, Calculate to solved and street | ate the as               | rbon, Q in ex                                    | (II) chlori<br>e.<br><br>xcess air |

|                                                            |   | •••••• |           |
|------------------------------------------------------------|---|--------|-----------|
|                                                            |   |        |           |
|                                                            |   | •••••• | ••••••    |
|                                                            |   |        |           |
|                                                            |   | •••••• | ••••••    |
|                                                            |   |        |           |
|                                                            |   | •••••• | ••••••    |
|                                                            |   |        |           |
|                                                            | • | •      | •         |
|                                                            |   |        |           |
|                                                            |   |        |           |
|                                                            |   |        |           |
|                                                            |   |        |           |
| ·                                                          |   |        | _         |
|                                                            |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | _         |
| dydrocarbon, Q has a density t.t.p.Determine the molecular |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| t.t.p.Determine the molecular                              |   |        | rocarbon, |
| narks)                                                     |   |        | rocarbon, |
| .t.p.Determine the molecular                               |   |        | rocarbon, |

chloride in excess ammonia solution.

| (ii)Write equation for the reaction leading to the formation of red precipitate. (01 mark) | mark)<br>                |                    | arbon, ( |          |          |          | (O½    |
|--------------------------------------------------------------------------------------------|--------------------------|--------------------|----------|----------|----------|----------|--------|
| d) Write equation to show how hydrocarbon, Q can be prepared from an alcohol. (03          | (ii)Write ed<br>formatio | quation ton of rec | for the  | reactior |          |          |        |
|                                                                                            | d) Write equa            |                    |          | ow hydro | ocarbon, | -        |        |
|                                                                                            |                          |                    |          |          |          |          |        |
|                                                                                            | The products o           | f pressu           | ire and  | volume,  | PV for   | 21.1g of | f gas, |
| W at different temperatures are shown below:  PV                                           | W at different PV        | temper             | atures ( | are show | vn below | :        | f gas, |



| W.                |                      |  |
|-------------------|----------------------|--|
|                   | (03 marks)           |  |
| •••••             |                      |  |
| ••••••            |                      |  |
| ••••••            |                      |  |
| ••••••            |                      |  |
| ••••••            |                      |  |
| ••••••            |                      |  |
| ••••••            |                      |  |
| formula<br>(03 ma | a of gas, W.<br>rks) |  |
| (00               |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |
|                   |                      |  |

| <br>Describe briefly     | how soap can be prep | pared from a nut. |
|--------------------------|----------------------|-------------------|
| (03 marks)               |                      |                   |
|                          |                      |                   |
|                          |                      |                   |
|                          |                      |                   |
|                          |                      |                   |
|                          |                      |                   |
| <br>Vrite the gener      | al equation for the: |                   |
| i)Formula of so<br>mark) | ap.                  | (01               |
|                          |                      |                   |
|                          |                      |                   |
|                          |                      |                   |

|    |                                                                                                                                                                                                                | •••••  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |                                                                                                                                                                                                                |        |
|    | ·············                                                                                                                                                                                                  |        |
| d) | )In an experiment, 9.85g of soap was prepared from vegetable oil containing an ester of hexadecanoic ac C <sub>15</sub> H <sub>35</sub> COOH.Calculate the mass of the vegetable oil in the experiment. marks) | id,    |
|    |                                                                                                                                                                                                                |        |
|    |                                                                                                                                                                                                                |        |
|    |                                                                                                                                                                                                                |        |
|    |                                                                                                                                                                                                                |        |
|    |                                                                                                                                                                                                                | •••••  |
|    |                                                                                                                                                                                                                | •••••• |
|    |                                                                                                                                                                                                                | •••••• |
|    |                                                                                                                                                                                                                | •••••• |
|    |                                                                                                                                                                                                                | •••••• |
|    |                                                                                                                                                                                                                |        |

## THE PERIODIC TABLE

| - 1              | 2                | T               | 4.               |                  |                  |                  |                 |                 |                                       | -               |                 | 3                | 1                | -               | 1                | 7                | 8                |
|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|-----------------|-----------------|---------------------------------------|-----------------|-----------------|------------------|------------------|-----------------|------------------|------------------|------------------|
| 1.0<br>H         |                  |                 |                  |                  |                  |                  |                 |                 |                                       |                 |                 |                  | 3 4 5 6          |                 |                  | 1.0<br>H         | 4.0              |
| 6.9<br>Li<br>3   | 9.0<br>Be        | 1               |                  |                  |                  |                  |                 |                 |                                       |                 |                 | 10.8<br>B<br>5   | 12.0<br>C<br>6   | 14.0<br>N<br>7  | 16.0<br>O<br>8   | 19.0<br>F        | 20.2<br>No<br>10 |
|                  | 24.3<br>Mg<br>12 |                 |                  |                  |                  |                  |                 |                 |                                       |                 |                 | 27.0<br>Al<br>13 | 28.1<br>Si<br>14 | 31.0<br>P<br>15 | 32.1<br>S<br>16  | 35.4<br>CI<br>17 | 40.0<br>Ai<br>18 |
| 39.1<br>K<br>19  | 40.1<br>Ca<br>20 |                 |                  | 1                | 52.0<br>Cr<br>24 |                  |                 |                 |                                       |                 |                 |                  | 72.6<br>Ge<br>32 | 1               | 79.0<br>Se<br>34 | 79.9<br>Br<br>35 | 83.8<br>Kı<br>36 |
| 85.5<br>Rb<br>37 | 87.6<br>Sr<br>38 | 88.9<br>Y<br>39 | 91.2<br>Zr<br>40 | 92.9<br>Nb<br>41 | 95.9<br>Mo<br>42 | 98.9<br>Tc<br>43 | 101<br>Ru<br>44 | 103<br>Rh<br>45 | 106<br>Pd<br>46                       | 108<br>Ag<br>47 | 112<br>Cd<br>48 | 115<br>In<br>49  | 119<br>Sn<br>50  | 122<br>Sb<br>51 | 128<br>Te<br>52  | 127<br>I<br>53   | 131<br>Xe<br>54  |
| 133<br>Cs<br>55  | 137<br>Ba<br>56  | 139<br>La<br>57 | 178<br>Hf<br>72  | 181<br>Ta<br>73  | 184<br>W<br>74   | 186<br>Re<br>75  | 190<br>Os<br>76 | 192<br>Ir<br>77 | 195<br>Pt<br>78                       | 197<br>Au<br>79 | 201<br>Hg<br>80 | 204<br>TI<br>81  | 207<br>Pb<br>82  | 209<br>Bi<br>83 | 209<br>Po<br>84  | 210<br>At<br>85  | 222<br>Rn<br>86  |
| 223<br>Fr<br>87  | 226<br>Ra<br>88  | 227<br>Ac<br>89 |                  | 2 P              |                  |                  | 10 - 1          | 10 55           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |                 | (a)              |                  |                 |                  |                  | 9 1 3<br>9% 1 3  |
|                  |                  | 9 11            | 139<br>La<br>57  | 140<br>Ce<br>58  |                  | 144<br>Nd<br>60  |                 | 150<br>Sm<br>62 | 152<br>Eu<br>63                       |                 |                 |                  | 165<br>Ho<br>67  | 167<br>Er<br>68 | 169<br>Tm<br>69  | 173<br>Yb<br>70  | 175<br>Lu<br>71  |
|                  |                  | F7   8          | 227<br>Ac<br>89  | 232<br>Th<br>90  | 231<br>Pa<br>91  | 238<br>U<br>92   | 237<br>Np<br>93 |                 | 243<br>Am<br>95                       |                 |                 |                  | Es               | Fm              | Md               | No               | 260<br>Lw<br>103 |

**♥** ===END===